Seriál 11. ročníku

Celý seriál je také možné nalézt v ročence.

Úlohy

1. Série 11. Ročníku - S. rentgenové záření

 

  • Určete nejmenší vlnovou délku rentgenového záření rentgenky, v níž jsou elektrony urychlovány napětím $20\,\jd{ kV}$.
  • Z jakého kovu byl zhotoven terčík, na nějž dopadaly v rentgence elektrony, pokud spektrální čára $K_{α}$ ve spektru rentgenového záření měla vlnovou délku $(155 ± 3)\cdot 10^{-12}\jd{ m}$?

Návod: Záření rentgenky je dvojího druhu. Pokud elektrickým polem urychlený elektron při dopadu na terčík vyzáří část své kinetické energie v podobě fotonu, vzniká tzv. brzdné záření, jehož spektrum je spojité. Pokud dopadající elektron vyrazí z atomu terčíku elektron z jedné z nejnižších elektronových hladin ($n_{2}$), přeskakuje za malý okamžik na jeho místo nějaký elektron z vyšší hladiny ($n_{1}$), přičemž vyzáří foton o energii odpovídající tomuto přechodu. $K_{α}$ je název spektrální čáry, která vznikne při přeskoku z druhé hladiny ($n_{1}=2$) na první ($n_{2}=1$). V tomto případě však cítí přeskakující elektron efektivní náboj jádra $(Z-1)e$, protože je jádro vůči němu stíněno jedním elektronem, který na nejnižší energetické hladině zbyl.

Literatura: Arthur Beiser: Úvod do moderní fyziky, Academia, Praha 1978.

2. Série 11. Ročníku - S. relace neurčitosti

 

  • Před objevem neutronu existovala hypotéza, že jádro s atomovým číslem $Z$ a hmotnostním $A$ se skládá z $A$ protonů a $A-Z$ elektronů. Odhadněte řádově, jakou kinetickou energii by měl elektron, jehož neurčitost polohy by byla srovnatelná s velikostí jádra helia. Jaké důsledky má tento odhad pro zmíněnou hypotézu? Pokud se částice pohybuje rychlostí srovnatelnou s rychlostí světla, nelze již použít klasický vztah pro kinetickou energii $E_{k}=p^{2}⁄2\;\mathrm{m}$, a místo něj je třeba vzít relativistický vzorec:

$$E_{k}=\sqrt{(p^{2}c^{2}+m_{0}^{2}c^{4}} - m_{0}c^{2}\,,$$

kde $m_{0}$ je klidová hmotnost částice.

  • Uvažujme výše popsaný dvojštěrbinový experiment s elektrony. Vzdálenost štěrbin je $b=0,3\;\mathrm{mm}$ a vzdálenost stínítka od přepážky $l=1\;\mathrm{m}$. Zjistěte, jakou rychlost musí mít elektrony, aby vzdálenost dvou sousedních interferenčních minim na stínítku, které může být sestaveno například z fotočlánků, byla $d=0,2\;\mathrm{mm}$.
  • Představte si, že místo dvou štěrbin uděláme do přepážky pouze jednu. Po průchodu touto štěrbinou se fotony odchylují od původního směru, takže na stínítku uvidíme místo ostrého obrazu štěrbiny rozmazanou světlou skvrnu. Vysvětlete tento jev na základě relací neurčitosti.

Literatura: Arthur Beiser, Úvod do moderní fyziky, Academia, Praha 1978

3. Série 11. Ročníku - S. kvantovka

  • V kvantové mechanice má smysl řešit i jednorozměrné úlohy, to znamená uvažovat částice, které se mohou pohybovat pouze ve směru osy $x$ a jejichž vlnová funkce $ψ(x)$ závisí pouze na $x$.

Podívejme se na nejjednodušší z nich, na částici v „nekonečně hluboké potenciálové jámě“. Tím máme na mysli částici, která se nemůže vyskytovat jinde, než v oblasti $x$ náleží $(0,L)$, takže její vlnová funkce je vně této „jámy“ o šířce $L$ nulová. Uvnitř potenciálové jámy se částice může pohybovat zcela volně, protože na ni nepůsobí žádné síly. Obrazně řečeno, uvnitř nekonečné potenciálové jámy má částice potenciální energii nulovou a vně nekonečnou. Vaším úkolem je napsat vlnové funkce odpovídající všem možným stavům systému, víte-li, že každá vlnová funkce této částice je v intervalu $[0,L]$ harmonická (tj. ve tvaru $c_{1}\sin(kx) + c_{2}\cos(kx)$, $c_{1}$, $c_{2}$ jsou komplexní čísla, $k$ je reálné) a na jeho krajích nulová. S pomocí faktu, že perioda této harmonické funkce je rovna de Broglieho vlnové délce, určete všechny možné energie, které částice může mít. Nakonec se ještě pokuste získané vlnové funkce nanormovat.

  • Vypočítejte, s jakou pravděpodobností se elektron nachází v jádře iontu $\jd{He}^{+}$, když je ve stavu $1s$, kterému odpovídá normovaná vlnová funkce: $$ψ(\textbf{r}) = \sqrt{\frac{Z^{3}}{πa_{0}^{3}}}e^{(-Zr/a_{0})}\,,$$ kde $Z$ je protonové číslo helia a $a_{0}$ Bohrův poloměr atomu vodíku. Pokud tuto pravděpodobnost neumíte vypočítat přesně, pokuste se ji odhadnout seshora i zezdola, abychom znali alespoň její řád.
  • Napište prostorovou závislost $ψ(\textbf{r}_{1},\textbf{r}_{2})$ vlnové funkce soustavy dvou elektronů v základním stavu atomu helia při zanedbání interakce mezi nimi.

Literatura: Arthur Beiser: Úvod do moderní fyziky, Academia, Praha 1978.

4. Série 11. Ročníku - S. časový vývoj

 

  • Mějme dvě časově závislé vlnové funkce $Ψ_{1}(x,y,z,t)$

a $Ψ_{2}(x,y,z,t)$, které odpovídají stacionárním stavům s různými energiemi $E_{1}$ a $E_{2}$. Pokud budete chtít, můžete si dosazením do časové Schrödingerovy rovnice ověřit, že i jejich superpozice

$$Ψ(x,y,z,t)=a Ψ_{1}(x,y,z,t) + b Ψ_{2}(x,y,z,t)\,,$$ $a,b$ jsou komplexní čísla, $|a|+|b|≠0$, odpovídá časovému vývoji přípustné vlnové funkce. Vaším úkolem je ale něco jiného. Máte zjistit, za jakou dobu $T$ bude částice, která byla v čase $t=0$ popsána funkcí $Ψ(x,y,z,0)$, opět ve stejném stavu. Jinak řečeno, najděte nejmenší možné $T>0$, pro které je $$Ψ(x,y,z,T)=cΨ(x,y,z,0)\,,$$ kde $c$ je libovolné nenulové komplexní číslo.

  • Vypočtěte vlnovou délku fotonu o frekvenci, s jakou se mění stav (nikoli vlnová funkce!) elektronu v atomu vodíku, když je v superpozici jednoho stacionárního stavu na druhé a jednoho na třetí energetické hladině.

Literatura: Arthur Beiser: Úvod do moderní fyziky, Academia, Praha 1978.

5. Série 11. Ročníku - S. srážky a rozpady částic

 

  • Pion $π^{0}$, který byl v laboratorní soustavě v klidu se rozpadnul na dva fotony:

$$π^{0} → γ + γ.$$

Vypočítejte jejich energie.

  • Uvažujme rozpad pionu $π^{+}$, který byl v laboratorní soustavě také v klidu, na antimion a mionové neutrino:

$$π^{+ } → μ^{+} + ν_{μ}.$$

Zjistěte energii tohoto neutrina za předpokladu, že jeho klidová hmotnost je nulová. Při výpočtu je výhodné použít zákona zachování energie a hybnosti a rovnici $E^{2}-p^{2}c^{2}=m_{0}^{2}c^{4}$.

  • Pokud mají dva elektrony dostatečně velkou energii, může se při jejich srážce zrodit elektron-pozitronový pár:

$$e^{-} + e^{-} → e^{-} + e^{-} + e^{-} + e^{+}.$$

Určete, jakou minimální energii a rychlost musí mít první elektron v laboratorní soustavě, pokud je druhý elektron v téže soustavě v klidu.

Uvažte, že v mezním případě se při pohledu z těžišťové soustavy srazí dva elektrony s opačnými hybnostmi a všechny čtyři výsledné částice pak zůstanou prakticky stát.

6. Série 11. Ročníku - S. hmotnost pionu a zákony zachování

Najděte horní řádový odhad hmotnosti mezonu $π^{0}$, který podle Yukawovy teorie zprostředkovává silnou interakci mezi dvěma neutrony, když víte, že její dosah je zhruba $10^{-15}\,\jd{ m}$. Vzpomeňte si na „relaci neurčitosti mezi časem a energií“, uvažte, že energie, která se nezachovává je minimálně $m_{π}c^{2}$, a že pion za příslušný čas nemůže doletět dál než světlo ve vakuu.

Rozhodněte, zda mohou podle současných znalostí v principu proběhnout následující procesy

$$p^{+} + e^{-} → K^{-} + e^{+} + ν_{e} + ν_{e}\,,$$

$$π^{0} + μ^{+} → e^{+} + ν_{μ} + ν_{e}\,,$$

$$Δ^{++} → p^{+} + π^{0}\,,$$

a svůj výsledek zdůvodněte.