Seriál 16. ročníku
Celý seriál je také možné nalézt v ročence.
Úlohy
1. Série 16. Ročníku - S. komplexní čísla
- Spočtěte reálnou a imaginární část sin($a+bi)$.
- Pomocí komplexní symbolické metody odvoďte vztah pro rezonanční frekvenci paralelního RLC obvodu, tj. nalezněte frekvenci, pro kterou má při konstantním napětí celkový proud v obvodu minimální amplitudu.
- Sečtěte pomocí komplexních čísel následující řady. (Návod: řada $A+Bi$ je geometrická.)
$$A=\sum_{n=0}^{\infty}e^{-n\delta}\cos(n\varphi), B=\sum_{n=0}^{\infty}e^{-n\delta}\sin(n\varphi)$$
2. Série 16. Ročníku - S. limity a derivace
- Dokažte, že těleso, které má v čase $t$ polohu $x = gt^{2}/2$ + $v_{0}t$ + $x_{0}$ se pohybuje se zrychlením $g$.
- Spočítejte $lim_{x→1}(x^{2} - 4x + 3)/(x^{2} + 2x - 3)$
- Nahraďte co nejlépe funkcí $f$ v okolí bodu $x = 0$ lineární funkcí, víte-li $f(0)=3$ a $f'(0)=-2$.
- Jaký je poměr výšky a průměru podstavy válce, který má při daném povrchu maximální objem?
3. Série 16. Ročníku - S. integrály
- Spočítejte integrály funkcí $y=x^{2}e^{x}$, y = $\frac{\sin^{3}{x}}{cos^{2}{x}}$.
- Určete obsah obrazce, který je ohraničen funkcemi $y_{1}=\sqrt{|x|}+\sqrt{1-|x|}$, $y_{2}=\sqrt{|x|}-\sqrt{1-|x|}$. Tento obrazec nakreslete.
4. Série 16. Ročníku - S. diferenciální rovnice
- Organizátor FYKOSu vypil velmi rychle láhev tvrdého alkoholu. Alkohol se z žaludku vstřebává do krve rychlostí úměrnou jeho množství (v žaludku) s konstantou úměrnosti $\alpha$ a z krve je odbouráván játry podle stejného vztahu, tentokrát však s konstantou úměrnosti $\beta$. Sestavte diferenciální rovnici popisující tyto děje, určete závislost množství alkoholu v krvi na čase, určete čas, ve kterém je koncentrace maximální a vypočítejte ji.
- Šnek plazící se rychlostí $1\,\jd{mm.s^{-1}}$ se v čase $t_{0}$ postaví na začátek gumového lana dlouhého $1\, \jd{m}$ a začne se plazit. Ve stejném okamžiku se lano začne napínat rychlostí $1 \,\jd{m.s^{-1}}$ (je nekonečně pružné takže nikdy nepraskne). Rozhodněte, zda šnek dosáhne konce lana v konečném čase a pokud ano, spočítejte, za jak dlouho se tak stane.
- Takzvaná redukovaná Gaussova rovnice má tvar
$$xy''+(\gamma -x)y'-\alpha y = 0$$ Předpokládejte řešení ve tvaru Taylorova polynomu, určete vztah pro jeho koeficienty a vyšetřete asymptotické chování řešení (tj. určete jakou funkcí by se dalo vystihnout jeho chování pro velká $x$). Určete pro jaké hodnoty koeficientů $\gamma$ a $\alpha$ je konečný tento integrál $$\int ^{\infty} e^{x/2}F(\alpha, \gamma, x) \d x\,$$ kde $F(\alpha, \gamma, x)$ značí řešení Gaussovy rovnice (takzvaná redukovaná hypergeometrická funkce).
Poznámka: Pokud označíme $E=-\frac{1}{\alpha^{2}}$, dostaneme z poslední rovnice pro $E$ zajímavou podmínku. A pokud se vám při pohledu na ni začíná vybavovat vzorec pro možné hodnoty energie elektronu v atomu vodíku, pak vězte, že podobnost s vaším výsledkem není vůbec náhodná.
5. Série 16. Ročníku - S. algebra
- Dokažte, že vektory $v_{1}=(1,2,3)$, $v_{2}=(-1,0,1)$, $v_{3}=(1,1,1)$ jsou lineárně závislé.
- Vyřešte následující soustavu diferenciálních rovnic pomocí výpočtu exponenciály matice
$$ \begin{pmatrix} x'\\y'\end{pmatrix}=\begin{pmatrix}a&-b\\b&a\\\end{pmatrix} \begin{pmatrix}x\\y\\ \end{pmatrix} $$
Diskutujte tvar trajektorie řešení v rovině ($x,y)$ v závislosti na znaménku parametrů $a,b$.
Nápověda: Zjistěte, zda „náhodou“ neexistuje jistá podobnost mezi maticí této soustavy a komplexním číslem $a$ + $bi$ a vzpomeňte si na vzorec pro exponenciálu komplexního čísla z prvního dílu seriálu.
- Napište matice $R_{1}$, $R_{2}$, $R_{3}$ popisující prostorové rotace o úhel $\frac{\pi}{2}$ okolo os $x$, $y$ a $z$ a spočítejte komutátory [$R_{1}$, $R_{2}]$, [$R_{2}$, $R_{3}]$, [$R_{1}$, $R_{3}]$. Jako nepovinný bonus se můžete pokusit své výsledky zapsat v jednotném tvaru pomocí takzvaného $Levi-Civittova$ $\epsilon$ [čti: levičivitova].
Levi-Civittovo $\epsilon$ je symbol se třemi indexy $\epsilon_{ijk}$, kde $i,j,k = 1,2,3$, který nabývá následujících hodnot: Mají-li alespoň dva z jeho indexů stejnou hodnotu, je $\epsilon_{ijk} = 0$. Dále $\epsilon_{123} = 1$ a pro všechny ostatní permutace indexů (1,2,3) získáme jeho hodnotu tak, že vyjdeme z posloupnosti 1,2,3, kterou budeme postupně modifikovat přehazováním poloh dvou čísel (např. z (1,2,3) na (2,1,3)) a to tak dlouho, dokud nedospějeme k permutaci indexů která nás zajímá. Pokud byl počet kroků (přehození dvou čísel) sudý, bude $\epsilon_{ijk}$ a v opačném případě je $\epsilon_{ijk} = -1$ (jedná se o totálně antisymetrický tenzor třetího řádu).
6. Série 16. Ročníku - S. vícerozměrné integrály
- Spočítejte průměrnou vzdálenost cestovatele náhodně se pohybujícího po severní polokouli od severního pólu a od rovníku (předpokládejte že cestovatel se pohybuje rovnoměrně po celém povrchu polokoule, za vzdálenost berte délku cesty po povrchu Země).
- Uvažujte nekonečně vysokou rotačně symetrickou věž, jejíž poloměr ve výšce $h$ nad zemí je $r=\frac{a}{1+\frac{h}{a}}$, kde $a=1\;\jd{m}$. K dispozici máme barvu, jejíž krycí schopnost je $10\,\jd{m^{2}}$ na litr. Rozhodněte, zda potřebujeme více barvy na natření nebo naplnění této věže barvou.
- Trpaslíci se rozhodli, že pomohou Sněhurce při vaření. Sněhurka tedy rozkrájela jeden (dokonale kulatý) brambor na sedm stejně tlustých plátků a rozdala je trpaslíkům k oškrábání. Rozhodněte, který z trpaslíků bude mít nejvíce práce (trpaslíkem vynaložené usílí je úměrné povrchu oškrábané slupky).