Seriál 33. ročníku

Úlohy

(10 bodů)1. Série 33. Ročníku - S. pomalý rozjezd

  1. Vyjádřete následující veličiny1) pomocí základních jednotek SI.
    1. $\jd {F}\cdot \Omega $, kde $\jd {F}$ je farad a $\Omega$ je ohm
    2. $\jd {N}\cdot \jd {Pa}$, kde $\jd {N}$ je newton a $\jd {Pa}$ je pascal
    3. $\dfrac {\jd {C}\cdot \jd {V}}{\jd {J}}$, kde $\jd {C}$ je coulomb, $\jd {V}$ je volt a $\jd {J}$ je joule
    4. $\dfrac {\jd {T}\cdot \jd {Wb}}{\jd {H}\cdot \jd {Sv}}$, kde $\jd {H}$ je henry, $\jd {Sv}$ sievert, $\jd {T}$ tesla a $\jd {Wb}$ weber
  2. V následujících tvrzeních nalezněte všechny chyby a popište, proč jde o chyby. (2 body)
    1. $s = vt^2/2 = 5{,}2 \cdot 1{,}2^2 /2 = 3{,}744 \mathrm{m}  . $
    2. $y\_m \sin \( 2 \pi \omega \) = 15 cm \cdot \sin \( 2 \cdot 3{,}141 \cdot 50 Hz \) \doteq 0 cm $
    3. Pro experimenty jsme použili úspěšně sadu gamabeta. Na základě měření radioaktivního rozpadu Uranu ve smolinci jsme zjistily, že náš vzorek má aktivitu přesně 532,24 bequerelů.
    4. $s = 1{,}23 \mathrm{m}$, $t = 2{,}7 \mathrm{s} \Rightarrow v = s/t \doteq 0{,}46 \mathrm{m\cdot s^{-1}}$, $m = 240 \mathrm{g}$, $E = mv^2/2 \doteq 25 \mathrm{J}$, $P = E/t \doteq 9{,}3 \mathrm{W}$
  3. Jakou silou působí vítr na korunu stromu? Víme, že to má souvislost s rychlostí větru $v$, průřezem stromu vystaveného větru $S$ a hustotou vzduchu $\rho $. Proveďte rozměrovou analýzu a na jejím základě určete vztah pro sílu.
  4. Sestavte podobnostní číslo odpovídající situaci, ve které protlačujeme kapalinu skrz charakteristickou délku $l$ pomocí gradientu tlaku $\dfrac {\d p}{\d x}$ (případně si tuto veličinu představte jednoduše jako změnu tlaku se vzdáleností $\dfrac {\Delta p}{\Delta x}$). Kapalina má hustotu $\rho $ a kinematickou viskozitu $\nu $. Určete, jaké všechny varianty tohoto podobnostního čísla existují. Jednu z nich si vyberte a pokuste se jí interpretovat.
  5. Bonus: Vymyslete co nejoriginálnější Planckovu jednotku (veličinu sestavenou z kombinace redukované Planckovy konstanty $\hbar $, gravitační konstanty $G$, rychlosti světla $c$, Boltzmannovy konstanty $k\_B$ a Coulombovy konstanty $k\_e$, přičemž nemusí obsahovat všechny). Popište její odvození a okomentujte její hodnotu. Nejzajímavější zmíníme v brožurce s řešeními.
1)
Bez ohledu na to, že dané součiny možná nedávají žádný rozumný fyzikální smysl.

Karel chce trhat rekordy v délce zadání.

(10 bodů)2. Série 33. Ročníku - S. směs souřadnic a grafiky

  1. Určete, kolik procent první stránky vzorového řešení úlohy 26-IV-5 zabírá černá barva. Řešení této úlohy najdete na https://fykos.cz/_media/rocnik26/ulohy/pdf/uloha26_4_5.pdf.
  2. Představte si, že máte tužku, jejíž tuha má poloměr $r=0{,}8 \mathrm{mm}$. Tuha je vyrobena z grafitu v šesterečné soustavě, kde vzdálenost atomů uhlíku v jedné vrstvě je rovna $a = 2{,}46 \cdot 10^{-10} \mathrm{m}$ a jednotlivé vrstvy jsou od sebe vzdáleny $c = 6{,}71 \cdot 10^{-10} \mathrm{m}$. Jakou délku tuhy spotřebujete na pomalování celé čtvrtky A4, pokud se papír při barvení pokryje průměrně $100$ vrstvami tuhy?

\setcounter {enumi}{2}

  1. Na obrázku je zobrazena stabilní tyčová soustava, která se nachází v tíhovém poli se zrychlením $g$. Nejtlustší linka znázorňuje dokonale tuhé tyče zanedbatelné hmotnosti. Na konci těchto tyčí je na nehmotném provázku upevněno závaží o hmotnosti $m$ (na obrázku zobrazeno středně tlustou linkou). Tenké čáry symbolizují délky tyčí. Platí, že $\alpha + \beta = 45\dg $. Tyč mezi úhly $\alpha $ a $\beta $ půlí horní tyč. Tyče mohou působit silou pouze ve svém směru (žádná složka není kolmá na tyč). Tyče jsou v místech dotyku s levou stěnou pevně upevněny. Určete, které tyče jsou namáhány v tlaku a které v tahu a spočítejte velikosti sil, které na ně působí.
  2. Uvažujme spirálu, která začíná v počátku soustavy souřadné a odvíjí se rovnoměrně. Vzdálenost mezi jednotlivými závity $a$ je konstantní. Popište pohyb po této spirále ve vhodných souřadnicích.
  3. Mějme šroubovici, která se odvíjí rovnoměrně. Šroubovice má konstantní poloměr $R$ a konstantní vzdálenost mezi závity $h$. Popište pohyb po šroubovici ve vhodných souřadnicích a určete, jaká je délka jednoho závitu této šroubovice.

Bonus: Vymyslete nebo najděte (a citujte) souřadnice, které nejsou v knihovničce FO a byly by vhodné pro popis nějakého fyzikálního problému (uveďte jakého). Souřadnice popište převodem z kartézských souřadnic na vámi vybrané a zpět. Dále ukažte, jak lze ve vašich souřadnicích obecně určit vzdálenost dvou bodů.

Karel generoval problémy.

(10 bodů)3. Série 33. Ročníku - S. vzduchová pistole podrobně

Máme vzduchovou pistoli o hmotnosti $M = 1{,}3 \mathrm{kg}$. Vystřelíme z ní diabolku (náboj), která má hmotnost $m = 0{,}50 \mathrm{g}$ a průměr $d = 4{,}5 \mathrm{mm}$.

  1. Jakou kinetickou energii bude mít náboj po výstřelu, když podle technické specifikace dosáhne rychlosti $v = 250 \mathrm{fps}$ (tedy 250 stop za sekundu)?
  2. Jaký bude zpětný ráz pistole? Zajímá nás jak rychlost, kterou by se zbraň pohybovala, kdyby nebyla upevněná, tak její hybnost.
  3. Jak se změní moment hybnosti Země, pokud vystřelíme ze zbraně rovnoběžně se zemským povrchem? Zajímají nás okamžiky, kdy měla maximální hybnost a potom, když dopadla a zcela se zastavila. Pro jednoduchost uvažujte, že zbraň je pevně spojená se Zemí (která je zcela kulatá) a že zbraň při výstřelu nezačala rotovat. Jakou úhlovou rychlost Země získá či ztratí?
  4. Jaký je spodní odhad maximálního zrychlení střely, pokud se náboj v první čtvrtině hlavně urychlí na $90 \mathrm{\%}$ maximální rychlosti? Vnitřní délka hlavně je $D =18 \mathrm{cm}$.
  5. Náboj jsme vstřelili do kousku plastelíny o hmotnosti $m\_p = 42 \mathrm{g}$, který je zavěšený na tenkém provázku délky $l = 48 \mathrm{cm}$. Pokud by náboj v plastelíně uvízl, jaká by byla maximální úhlová výchylka tohoto kyvadla?
  6. Může náboj při nárazu na lidskou pokožku překročit hodnotu plošné dopadové energie $Q\_{max} = 50 \mathrm{J\cdot cm^{-2}}$?

  7. Bonus: Nakonec se nám experiment s kyvadlem nepodařil a plastelínu jsme prostřelili. Naměřili jsme poloviční výchylku kyvadla, než jsme původně očekávali. Jaká byla výstupní rychlost náboje z plastelíny? Předpokládejte, že při průchodu plastelínou náboj nezmění směr a ani nic z plastelíny neodnese s sebou.

Karel chtěl hlouběji rozebrat standardní úlohu.

(10 bodů)4. Série 33. Ročníku - S. elektro todleto

  1. Jak velký je odpor mezi sousedními vrcholy $n$-dimenzionálního drátěného „čtyřstěnu“? Každá hrana má odpor $R$. Začněte výpočtem pro $n = 1$ (úsečka), $n = 2$ (trojúhelník) a $n = 3$ (čtyřstěn) a následně najděte obecný vztah.
  2. Jaké umístění a velikost bude mít zrcadlový elektrický náboj k přímce s homogenní délkovou hustotou náboje $\lambda $, která je umístěna ve vzdálenosti $r > R$ od středu uzemněného dutého nekonečně dlouhého válcového vodiče o poloměru $R$? Válcový vodič a přímka jsou rovnoběžné.
  3. Mějme nekonečnou rovinu s plošnou hustotou náboje $\sigma _1$. Té se téměř dotýká kulová slupka s poloměrem $R$ a s plošnou hustotou náboje $\sigma _2$. Jaký musí být vztah mezi uvedenými veličinami, aby v místě, kde jsou k sobě deska se slupkou nejblíže, byla intenzita elektrického pole nulová?

Bonus: Jaká je intenzita gravitačního pole uvnitř a vně planety o poloměru $R$, jejíž hustota záleží pouze na vzdálenosti od středu $r$ podle vztahu $\rho = \rho \_{max} \(1 - \(\frac {r}{R}\)^2\)$?

Karel stále dělá problémy.

(10 bodů)5. Série 33. Ročníku - S. mini a maxi

  1. Máme PET lahev s vodou, která stojí na rozlehlé rovině. V jaké výšce bychom měli vytvořit v láhvi malý otvor, aby voda dostříkla do nejdále od láhve? Láhev necháme stát na rovině a otvor prochází kolmo stěnou.
  2. Kam bychom měli umístit otvor (viz předchozí podúloha), pokud chceme, aby byl dostřik nejdelší po jedné minutě? Předpokládejte, že láhev má konstantní průřez $S$ a otvor má výrazně menší průřez $s$. Pro numerické řešení odhadněte rozumné hodnoty konstant.
  3. Jaký může mít baterie maximální výkon na spotřebiči, pokud má elektromotorické napětí $U_e$ a vnitřní odpor $R_i$? Pro jaký odpor spotřebiče to nastane? Respektive pro jakou impedanci to nastane, pokud bude obvod tvořen rezistorem, cívkou a kondenzátorem?
  4. Jak nejblíže se k sobě mohou dostat dvě jádra dusíku $14$, která se pohybují se střední kvadratickou rychlostí odpovídající plynu za normálních podmínek?
  5. Najděte maximální možnou teplotu, kterou by mohl mít plyn, ve kterém by probíhal děj $p = p_0 e^{-\alpha V}$, kde $\alpha $ je kladná konstanta a $p_0$ je tlak plynu v základním stavu.

Karel napínal až do po poslední chvíle.

(10 bodů)6. Série 33. Ročníku - S. být Sibylou ze Sáby…

U všech částí této úlohy po vás chceme, abyste hodnoty následujích veličin alespoň řádově odhadli a svoje odhady náležitě zdůvodnili. Pokud byste někde našli správné hodnoty, můžete je uvést pro srovnání, ale samotné nebudou akceptované jako řešení. Hodnotit se bude především dobře popsaný postup.

  1. Jaký nejmenší objem potřebujeme k uchování $1 \mathrm{GB}$ opakovaně čitelných informací při použití stávajících technologií?
  2. Kolik uhlí spotřebuje ročně uhelná elektrárna, pokud má stálý elektrický výkon $100 \mathrm{MW}$?
  3. Jak velké musí být těleso, aby dokázalo rozbít planetu podobnou Zemi na několik kusů tím, že do ní narazí?
  4. Kolik energie celkem člověk „spotřebuje“ za celý život? Včetně jídla, dopravy a všech dalších vymožeností, které využívá.
  5. Jak dlouho bychom museli svítit laserem na sirku, aby vzplála?

Bonus: Co nejpřesněji odhadněte průměrný čas odeslání finální verze této úlohy přes webový upload FYKOSu. Řešení zaslaná poštou neuvažujte. Určující čas je dle serveru.

Bonus II: Připomínáme, že můžete získat body za korektury zadání a řešení úloh tohoto ročníku. Navíc můžete získat jeden bod za to, když ke svému řešení připojíte zpětnou vazbu k letošnímu seriálu. Přišla vám lepší forma ne-zcela navazujících témat? Chybělo vám něco, co bychom mohli dodatečně doplnit na web? Jaké téma byste chtěli v příštím ročníku?

Karel po účastnících chtěl aby něco odhadli.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz