Seriál 33. ročníku
Úlohy
(10 bodů)1. Série 33. Ročníku - S. pomalý rozjezd
- Vyjádřete následující veličiny1) pomocí základních jednotek SI.
- $\jd {F}\cdot \Omega $, kde $\jd {F}$ je farad a $\Omega$ je ohm
- $\jd {N}\cdot \jd {Pa}$, kde $\jd {N}$ je newton a $\jd {Pa}$ je pascal
- $\dfrac {\jd {C}\cdot \jd {V}}{\jd {J}}$, kde $\jd {C}$ je coulomb, $\jd {V}$ je volt a $\jd {J}$ je joule
- $\dfrac {\jd {T}\cdot \jd {Wb}}{\jd {H}\cdot \jd {Sv}}$, kde $\jd {H}$ je henry, $\jd {Sv}$ sievert, $\jd {T}$ tesla a $\jd {Wb}$ weber
- V následujících tvrzeních nalezněte všechny chyby a popište, proč jde o chyby. (2 body)
- $s = vt^2/2 = 5{,}2 \cdot 1{,}2^2 /2 = 3{,}744 \mathrm{m} . $
- $y\_m \sin \( 2 \pi \omega \) = 15 cm \cdot \sin \( 2 \cdot 3{,}141 \cdot 50 Hz \) \doteq 0 cm $
- Pro experimenty jsme použili úspěšně sadu gamabeta. Na základě měření radioaktivního rozpadu Uranu ve smolinci jsme zjistily, že náš vzorek má aktivitu přesně 532,24 bequerelů.
- $s = 1{,}23 \mathrm{m}$, $t = 2{,}7 \mathrm{s} \Rightarrow v = s/t \doteq 0{,}46 \mathrm{m\cdot s^{-1}}$, $m = 240 \mathrm{g}$, $E = mv^2/2 \doteq 25 \mathrm{J}$, $P = E/t \doteq 9{,}3 \mathrm{W}$
- Jakou silou působí vítr na korunu stromu? Víme, že to má souvislost s rychlostí větru $v$, průřezem stromu vystaveného větru $S$ a hustotou vzduchu $\rho $. Proveďte rozměrovou analýzu a na jejím základě určete vztah pro sílu.
- Sestavte podobnostní číslo odpovídající situaci, ve které protlačujeme kapalinu skrz charakteristickou délku $l$ pomocí gradientu tlaku $\dfrac {\d p}{\d x}$ (případně si tuto veličinu představte jednoduše jako změnu tlaku se vzdáleností $\dfrac {\Delta p}{\Delta x}$). Kapalina má hustotu $\rho $ a kinematickou viskozitu $\nu $. Určete, jaké všechny varianty tohoto podobnostního čísla existují. Jednu z nich si vyberte a pokuste se jí interpretovat.
- Bonus: Vymyslete co nejoriginálnější Planckovu jednotku (veličinu sestavenou z kombinace redukované Planckovy konstanty $\hbar $, gravitační konstanty $G$, rychlosti světla $c$, Boltzmannovy konstanty $k\_B$ a Coulombovy konstanty $k\_e$, přičemž nemusí obsahovat všechny). Popište její odvození a okomentujte její hodnotu. Nejzajímavější zmíníme v brožurce s řešeními.
Karel chce trhat rekordy v délce zadání.
(10 bodů)2. Série 33. Ročníku - S. směs souřadnic a grafiky
- Určete, kolik procent první stránky vzorového řešení úlohy 26-IV-5 zabírá černá barva. Řešení této úlohy najdete na https://fykos.cz/_media/rocnik26/ulohy/pdf/uloha26_4_5.pdf.
- Představte si, že máte tužku, jejíž tuha má poloměr $r=0{,}8 \mathrm{mm}$. Tuha je vyrobena z grafitu v šesterečné soustavě, kde vzdálenost atomů uhlíku v jedné vrstvě je rovna $a = 2{,}46 \cdot 10^{-10} \mathrm{m}$ a jednotlivé vrstvy jsou od sebe vzdáleny $c = 6{,}71 \cdot 10^{-10} \mathrm{m}$. Jakou délku tuhy spotřebujete na pomalování celé čtvrtky A4, pokud se papír při barvení pokryje průměrně $100$ vrstvami tuhy?
\setcounter {enumi}{2}
- Na obrázku je zobrazena stabilní tyčová soustava, která se nachází v tíhovém poli se zrychlením $g$. Nejtlustší linka znázorňuje dokonale tuhé tyče zanedbatelné hmotnosti. Na konci těchto tyčí je na nehmotném provázku upevněno závaží o hmotnosti $m$ (na obrázku zobrazeno středně tlustou linkou). Tenké čáry symbolizují délky tyčí. Platí, že $\alpha + \beta = 45\dg $. Tyč mezi úhly $\alpha $ a $\beta $ půlí horní tyč. Tyče mohou působit silou pouze ve svém směru (žádná složka není kolmá na tyč). Tyče jsou v místech dotyku s levou stěnou pevně upevněny. Určete, které tyče jsou namáhány v tlaku a které v tahu a spočítejte velikosti sil, které na ně působí.
- Uvažujme spirálu, která začíná v počátku soustavy souřadné a odvíjí se rovnoměrně. Vzdálenost mezi jednotlivými závity $a$ je konstantní. Popište pohyb po této spirále ve vhodných souřadnicích.
- Mějme šroubovici, která se odvíjí rovnoměrně. Šroubovice má konstantní poloměr $R$ a konstantní vzdálenost mezi závity $h$. Popište pohyb po šroubovici ve vhodných souřadnicích a určete, jaká je délka jednoho závitu této šroubovice.
Bonus: Vymyslete nebo najděte (a citujte) souřadnice, které nejsou v knihovničce FO a byly by vhodné pro popis nějakého fyzikálního problému (uveďte jakého). Souřadnice popište převodem z kartézských souřadnic na vámi vybrané a zpět. Dále ukažte, jak lze ve vašich souřadnicích obecně určit vzdálenost dvou bodů.
Karel generoval problémy.
(10 bodů)3. Série 33. Ročníku - S. vzduchová pistole podrobně
Máme vzduchovou pistoli o hmotnosti $M = 1{,}3 \mathrm{kg}$. Vystřelíme z ní diabolku (náboj), která má hmotnost $m = 0{,}50 \mathrm{g}$ a průměr $d = 4{,}5 \mathrm{mm}$.
- Jakou kinetickou energii bude mít náboj po výstřelu, když podle technické specifikace dosáhne rychlosti $v = 250 \mathrm{fps}$ (tedy 250 stop za sekundu)?
- Jaký bude zpětný ráz pistole? Zajímá nás jak rychlost, kterou by se zbraň pohybovala, kdyby nebyla upevněná, tak její hybnost.
- Jak se změní moment hybnosti Země, pokud vystřelíme ze zbraně rovnoběžně se zemským povrchem? Zajímají nás okamžiky, kdy měla maximální hybnost a potom, když dopadla a zcela se zastavila. Pro jednoduchost uvažujte, že zbraň je pevně spojená se Zemí (která je zcela kulatá) a že zbraň při výstřelu nezačala rotovat. Jakou úhlovou rychlost Země získá či ztratí?
- Jaký je spodní odhad maximálního zrychlení střely, pokud se náboj v první čtvrtině hlavně urychlí na $90 \mathrm{\%}$ maximální rychlosti? Vnitřní délka hlavně je $D =18 \mathrm{cm}$.
- Náboj jsme vstřelili do kousku plastelíny o hmotnosti $m\_p = 42 \mathrm{g}$, který je zavěšený na tenkém provázku délky $l = 48 \mathrm{cm}$. Pokud by náboj v plastelíně uvízl, jaká by byla maximální úhlová výchylka tohoto kyvadla?
- Může náboj při nárazu na lidskou pokožku překročit hodnotu plošné dopadové energie $Q\_{max} = 50 \mathrm{J\cdot cm^{-2}}$?
- Bonus: Nakonec se nám experiment s kyvadlem nepodařil a plastelínu jsme prostřelili. Naměřili jsme poloviční výchylku kyvadla, než jsme původně očekávali. Jaká byla výstupní rychlost náboje z plastelíny? Předpokládejte, že při průchodu plastelínou náboj nezmění směr a ani nic z plastelíny neodnese s sebou.
Karel chtěl hlouběji rozebrat standardní úlohu.
(10 bodů)4. Série 33. Ročníku - S. elektro todleto
- Jak velký je odpor mezi sousedními vrcholy $n$-dimenzionálního drátěného „čtyřstěnu“? Každá hrana má odpor $R$. Začněte výpočtem pro $n = 1$ (úsečka), $n = 2$ (trojúhelník) a $n = 3$ (čtyřstěn) a následně najděte obecný vztah.
- Jaké umístění a velikost bude mít zrcadlový elektrický náboj k přímce s homogenní délkovou hustotou náboje $\lambda $, která je umístěna ve vzdálenosti $r > R$ od středu uzemněného dutého nekonečně dlouhého válcového vodiče o poloměru $R$? Válcový vodič a přímka jsou rovnoběžné.
- Mějme nekonečnou rovinu s plošnou hustotou náboje $\sigma _1$. Té se téměř dotýká kulová slupka s poloměrem $R$ a s plošnou hustotou náboje $\sigma _2$. Jaký musí být vztah mezi uvedenými veličinami, aby v místě, kde jsou k sobě deska se slupkou nejblíže, byla intenzita elektrického pole nulová?
Bonus: Jaká je intenzita gravitačního pole uvnitř a vně planety o poloměru $R$, jejíž hustota záleží pouze na vzdálenosti od středu $r$ podle vztahu $\rho = \rho \_{max} \(1 - \(\frac {r}{R}\)^2\)$?
Karel stále dělá problémy.
(10 bodů)5. Série 33. Ročníku - S. mini a maxi
- Máme PET lahev s vodou, která stojí na rozlehlé rovině. V jaké výšce bychom měli vytvořit v láhvi malý otvor, aby voda dostříkla do nejdále od láhve? Láhev necháme stát na rovině a otvor prochází kolmo stěnou.
- Kam bychom měli umístit otvor (viz předchozí podúloha), pokud chceme, aby byl dostřik nejdelší po jedné minutě? Předpokládejte, že láhev má konstantní průřez $S$ a otvor má výrazně menší průřez $s$. Pro numerické řešení odhadněte rozumné hodnoty konstant.
- Jaký může mít baterie maximální výkon na spotřebiči, pokud má elektromotorické napětí $U_e$ a vnitřní odpor $R_i$? Pro jaký odpor spotřebiče to nastane? Respektive pro jakou impedanci to nastane, pokud bude obvod tvořen rezistorem, cívkou a kondenzátorem?
- Jak nejblíže se k sobě mohou dostat dvě jádra dusíku $14$, která se pohybují se střední kvadratickou rychlostí odpovídající plynu za normálních podmínek?
- Najděte maximální možnou teplotu, kterou by mohl mít plyn, ve kterém by probíhal děj $p = p_0 e^{-\alpha V}$, kde $\alpha $ je kladná konstanta a $p_0$ je tlak plynu v základním stavu.
Karel napínal až do po poslední chvíle.
(10 bodů)6. Série 33. Ročníku - S. být Sibylou ze Sáby…
U všech částí této úlohy po vás chceme, abyste hodnoty následujích veličin alespoň řádově odhadli a svoje odhady náležitě zdůvodnili. Pokud byste někde našli správné hodnoty, můžete je uvést pro srovnání, ale samotné nebudou akceptované jako řešení. Hodnotit se bude především dobře popsaný postup.
- Jaký nejmenší objem potřebujeme k uchování $1 \mathrm{GB}$ opakovaně čitelných informací při použití stávajících technologií?
- Kolik uhlí spotřebuje ročně uhelná elektrárna, pokud má stálý elektrický výkon $100 \mathrm{MW}$?
- Jak velké musí být těleso, aby dokázalo rozbít planetu podobnou Zemi na několik kusů tím, že do ní narazí?
- Kolik energie celkem člověk „spotřebuje“ za celý život? Včetně jídla, dopravy a všech dalších vymožeností, které využívá.
- Jak dlouho bychom museli svítit laserem na sirku, aby vzplála?
Bonus: Co nejpřesněji odhadněte průměrný čas odeslání finální verze této úlohy přes webový upload FYKOSu. Řešení zaslaná poštou neuvažujte. Určující čas je dle serveru.
Bonus II: Připomínáme, že můžete získat body za korektury zadání a řešení úloh tohoto ročníku. Navíc můžete získat jeden bod za to, když ke svému řešení připojíte zpětnou vazbu k letošnímu seriálu. Přišla vám lepší forma ne-zcela navazujících témat? Chybělo vám něco, co bychom mohli dodatečně doplnit na web? Jaké téma byste chtěli v příštím ročníku?
Karel po účastnících chtěl aby něco odhadli.