Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)
ostatní
(10 bodů)1. Série 30. Ročníku - S. náhodná
- Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná veličina, rozdělení náhodné veličiny, realizace náhodné veličiny, střední hodnota, rozptyl, histogram).
- Vygenerujte grafy hustot pravděpodobnosti (případně pravděpodobností nabývání jednotlivých hodnot) všech v seriálu popsaných rozdělení náhodných veličin pro různé typy parametrů daného rozdělení a popište, jaký má změna parametru/ů vliv na tvar hustoty pravděpodobnosti (případně pravděpodobností nabývání jednotlivých hodnot).
- Vygenerujte z přiložených dat histogramy a pokuste se určit, ze kterého rozdělení tato data pocházejí.
- Definujme si náhodnou veličinu $X$ jako výsledek hodu „férovou“ šestistěnnou kostkou (všechna čísla padají se stejnou pravděpodobností). Určete rozdělení náhodné veličiny $X$ a dále spočítejte $\mathrm{E}X$ a $\mathrm{var}X$.
Bonus: Uveďte příklad dvou náhodných veličin, které mají stejnou střední hodnotu i stejný rozptyl, ale mají různá rozdělení.
Pro práci s daty a vykreslování grafů použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.
Michal stanovil zadání úlohy náhodně, snad nebude moc těžká.
(2 body)6. Série 29. Ročníku - 1. mám toho plnou hlavu
V roce 2015 byla udělena Nobelova cena za fyziku za experimentální prokázání oscilace neutrin. O neutrinech jste už jistě někdy slyšeli a možná víte, že s látkou interagují jen velmi slabě a proto dokáží bez zpomalení proletět Zemí a jinými velkými objekty. Zkuste za pomoci literatury a internetových zdrojů určit, kolik neutrin se v jednom okamžiku nachází v průměrném člověku. Nezapomeňte citovat zdroje!
Mirek měl pocit naplnění.
(4 body)6. Série 29. Ročníku - 3. jedeme z kopce
Autem o hmotnosti $M$ jedeme nahoru do kopce a dolů ze stejného kopce se sklonem $α$ stejnou rychlostí $v$ se zařazeným stejným převodovým stupněm, a tedy stejnými otáčkami motoru. Jaký je rozdíl tažného (do kopce) a brzdného (s kopce) výkonu motoru?
Napadlo Lukáše v kopci směrem na Rumburk.
(8 bodů)6. Série 29. Ročníku - E. zákeřný restituční koeficient
Pokud pustíte hopík či nějaký jiný míček na vhodný povrch, pak se začne odrážet. Při každém odrazu se disipuje (ztrácí do tepla, zvuku atd.) kinetická energie míčku a proto nevyskočí do takové výše, co původně. Definujme koeficient restituce jako poměr kinetických energií míčku po dopadu ku kinetické energii před dopadem. Závisí koeficient restituce na výšce, ze které míček dopadal? Vyberte si jeden vhodný míček a jeden vhodný povrch, na kterém proměřte závislost koeficientu restituce na výšce, ze které míček dopadl. Experiment náležitě popište a proveďte dostatečný počet měření. Nezapomeňte na vliv odporu vzduchu.
Karel zavzpomínal, jak ho jednou zamrzelo, že u ping-pongového míčku má velký vliv odpor vzduchu.
(6 bodů)6. Série 29. Ročníku - P. i-jablko
Vymyslete co nejvíce způsobů, jak sestrojit zařízení, které pozná, jakým směrem je natočeno vůči směru tíhového zrychlení a tuto informaci nějakým způsobem převede na elektrický signál. (Zařízení na způsob akcelerometru v chytrých telefonech.)
Napadlo Terku, když už se jí nechtěla učit analýza.
(7 bodů)5. Série 29. Ročníku - E. fotografická
Pomocí digitálního fotoaparátu změřte frekvenci střídavého proudu v síti. Postačí i chytrý telefon s vhodnou aplikací, která umožní nastavit přesnou hodnotu expozičního času.
Populární přednášky z fyziky na střední.
(3 body)4. Série 29. Ročníku - 3. šetřeme lesy
Máme roli toaletního papíru o poloměru $R=8\;\mathrm{cm}$ s dutou částí o poloměru $r=2\;\mathrm{cm}$. Každá vrstva namotaného papíru má tloušťku $d=200\; \mathrm{μm}$ a vrstvy na sebe dokonale přiléhají. O kolik útržků více v takovéto roli máme, pokud má jeden útržek délku $l_{1}=9\;\mathrm{cm}$, než když má jeden útržek délku $l_{2}=13\;\mathrm{cm}?$ Jako součást řešení vyžadujeme odhad chyby použité aproximace.
Bonus: Vypočtěte přesnou délku spirály, kterou papír vytváří.
Kiki je sice potvora, ale tohle by přece jen do Náboje nedala.
(8 bodů)4. Série 29. Ročníku - E. trhni si!
Změřte mez pevnosti v tahu kancelářského papíru. Ideálně použijte co nejméně potištěnou část brožurky ve které vám přišlo zadání (pro tisk je využíván papír $80\; \mathrm{g} \cdot \mathrm{m}^{-2}$).
Karel viděl příspěvek Vojty Žáka o měření s papírem na Veletrhu nápadů učitelů fyziky 20.
(5 bodů)4. Série 29. Ročníku - P. dietní věž
Jak vysoká věž by se dala postavit z hliníkových plechovek od dietního nápoje kolového typu?
Michal z http://what-if.xkcd.com/88/
(2 body)6. Série 28. Ročníku - 2. dýchej zhluboka
Mág Šedomil oslavil sté narozeniny již před drahnou dobou a začíná se pomalu obávat, že ho Smrť poctí svou dlouho odkládanou návštěvou. Rozhodne se proto, že se nechá zatlouct do kouzelné truhly, kam se k němu Smrť nedostane. Bohužel zapomněl řemeslníkům říci, aby přidali dýchací otvory. Vzduch v truhle zaujímá objem $V_{0}=400\,\jd{l}$, objemový zlomek kyslíku je $φ_{0}=0,21$. Při každém nádechu a výdechu se zužitkuje pouze $k=20\,\jd{\%}$ objemových kyslíku v dechovém objemu $V_{d}=0,5\,\jd{l}$. Dechová frekvence mága po uzavření truhly postupně roste podle vztahu
$$\\f(t)=f_0 \cdot \frac{\varphi_0}{\varphi (t)}\,,$$
kde $f_{0}=15\,\jd{dech\cdot min^{-1}}$ je počáteční dechová frekvence a $φ(t)$ objemový zlomek kyslíku v čase $t$. Určete, za jak dlouho si pro Šedomila přijde Smrť, jestliže minimální obsah kyslíku ve vzduchu potřebný pro přežití je $φ_{s}=0,06$.
DARK IN HERE, ISN'T IT? (Aneb Mirek a jeho kamarád Smrť.)