Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

vlnová optika

(7 bodů)4. Série 37. Ročníku - 4. dokonalý přechod?

Z materiálu s indexem lomu $n_1$ dopadá polarizovaný paprsek na rovinné rozhraní s materiálem o indexu lomu $n_2$ tak, že po průchodu neztratí na intenzitě. Poté dopadne na rovnoběžné rozhraní s indexem lomu $n_3$, přičemž opět projde beze ztrát, a tak dále. Najděte posloupnost $n_i$, která toto splňuje.

Marek J. potkal Brewsterův úhel.

(10 bodů)3. Série 37. Ročníku - S. vážení riešitelia

  1. Preveďte z definícií príslušných základných jednotiek do jednotiek SI
    • tlak $1 \mathrm{psi}$,
    • energiu $1 \mathrm{foot-pound}$,
    • silu $1 \mathrm{dyn}$.
  2. V difrakčnom experimnente bola nameraná mriežková konštanta (dĺžka hrany elementárnej bunky) kuchynskej soli ako $563 \mathrm{pm}$. Známa je tiež jej hustota $2,16 \mathrm{g\cdot cm^{-3}}$, a že kryštalizuje v kubickej, plošne centrovanej sústave. Určite hodnotu atómovej hmotnostnej jednotky.
  3. Tenká tyč dlhá $l$ s dĺžkovou hmotnosťou $\lambda $ leží na valci s polomerom $R$ kolmo na jeho os symetrie. Na každom konci tyče je umiestnené závažie s hmotnosťou $m$ tak, že tyč je vo vodorovnej polohe. Hmotnosť jedného závažia opatrne zvýšime na $M$. Aký uhol voči vodorovnému smeru tyč zaujme? Predpokladajte, že tyč z valca neskĺzne.
  4. Ako by ste zmerali hmotnosť:
    • astronauta na Medzinárodnej vesmírnej stanici,
    • naloženého ropného tankeru,
    • malého asteroidu mieriaceho k Zemi?

Dodo si stále pletie váhu a hmotnosť.

(12 bodů)2. Série 37. Ročníku - E. světlo na konci tunelu

Změřte intenzitu osvětlení pro světlo, které necháte procházet skrze kolový nápoj, v závislosti na tloušťce nápoje. Pomocí fitování naměřených dat určete koeficient absorpce.

Jardovi do plechovky vlétla vosa.

(12 bodů)5. Série 36. Ročníku - E. mizící CD

Pomocí difrakce na mřížce určete hustotu zápisu dat na CD. Zkuste porovnat výsledky s DVD.

Káťa má doma ještě stále spoustu CDček. Pepa jí to závidí.

(10 bodů)5. Série 36. Ročníku - S. ethanol či methanol?

Vazebná energie molekuly fluoru je přibližně $37 \mathrm{kcal/mol}$. Pokud uvážíme dosah vazebných interakcí přibližně $3 \mathrm{\AA }$ od optimální vzdálenosti, jakou (průměrnou) silou musíme působit, abychom molekulu roztrhli? Spočítejte „tuhost“ molekuly fluoru, pokud by uprostřed tohoto rozmezí působila síla o velikosti této průměrné síly. Jaká by byla vibrační frekvence této molekuly? Srovnejte s experimentální hodnotou $916{,}6 \mathrm{cm^{-1}}$. ($4 \mathrm{b}$)

Zkuste pomocí Psi4 spočítat disociační křivku $\mathrm {F_2}$ a proložit ji v okolí minima parabolou. Jaká vám z ní tentokrát vyjde energie vibračních přechodů? ($3 \mathrm{b}$)

Máte dvě lahve alkoholu, které vám přišly přinejmenším podezřelé. Vzali jste je tedy do laboratoře a získali z nich následující Ramanova spektra. Pomocí programu Psi4 spočítejte, na jakých frekvencích jsou vibrační přechody molekul metanolu i etanolu, a na základě toho odhadněte, ve které lahvi je methanol a ve které ethanol. Můžete využít přibližné geometrie ethanolu a methanolu, které jsou součástí zadání na webu. ($3 \mathrm{b}$)

Ramanovo spektrum lahve A Ramanovo spektrum lahve B

Alkohol od Mikuláše?!

(10 bodů)3. Série 36. Ročníku - S. kvanta orbitalů

  1. Podobně jako v seriálu vytvořte pomocí Hückelovy metody matici hamiltoniánu pro molekulu cyklobutadienu a ověřte, že její vlastní čísla jsou $\alpha +2\beta $, $\alpha $, $\alpha $, $\alpha -2\beta $. Načrtněte do diagramu, jaké jsou energie vzniklých orbitalů a jak by je obsadily elektrony. $(4~b)$
    Bonus: Jaký je zásadní rozdíl v charakteru těchto orbitalů a jejich obsazení oproti molekule benzenu, kterou jsme si ukázali v seriálu? Jaké to má pro molekulu cyklobutadienu důsledky? $(2~b)$
  2. Zkuste se vrátit k molekule betakarotenu a znovu spočítat, na jaké vlnové délce by měla absorbovat, tentokrát pomocí Hückelovy metody. Kolik by musel být parametr $\beta $, aby vyšla experimentální hodnota?
    Alternativa: Pokud narazíte na problém s diagonalizací hamiltoniánu, proveďte úlohu s molekulou hexa-1,3,5-trienu. Experimentální hodnota absorpce je v tomto případě na vlnové délce $250 \mathrm{nm}$. $(4~b)$
  3. Co se stane s molekulou (stačí taková, která má jen jednoduché vazby), pokud pomocí UV světla excitujeme elektron ze $\sigma $ do $\sigma ^\ast $ orbitalu? $(2~b)$

Mikuláš znovu naděloval, tentokrát dokonce skoro ve správnou roční dobu.

(10 bodů)2. Série 36. Ročníku - S. počítáme kvanta

  1. Najděte si molekulu betakarotenu a zkuste spočítat, jakou by měla mít barvu, respektive na jaké vlnové délce absorbuje. Použijte jednoduchý model nekonečné potenciálové jámy, ve které jsou „uvězněny“ $\pi $ elektrony z dvojných vazeb, tedy za každou dvojnou vazbu dva elektrony. Absorpce pak odpovídá takovému přechodu, že elektron přeskočí z nejvyšší obsazené hladiny na první neobsazenou. Srovnejte s experimentální hodnotou. Proč hodnota z našeho modelu nevychází tak, jak bychom chtěli? (5b)
  2. Zkusme zlepšit náš model. Při studiu některých látek, především kovů či polovodičů, zavádíme efektivní hmotnost elektronu. Místo toho, abychom složitě popisovali prostředí, ve kterém se elektrony pohybují, se tváříme, že elektrony jsou lehčí nebo těžší než ve skutečnosti. Jakou by musely mít hmotnost, aby nám vyšla správná experimentální hodnota? Uveďte ji v násobcích hmotnosti elektronu. (2b)
  3. Pokud vyrobíme mikroskopické kuličky (nanočástice) selenidu kademnatého $\ce {CdSe}$ o velikosti $2{,}34 \mathrm{nm}$. Rozzáří se po ozáření UV světlem jasně zelenou barvou na vlnové délce $536 \mathrm{nm}$. Když je zvětšíme na velikost $2{,}52 \mathrm{nm}$, posune se vlnová délka vyzařovaného světla do žluté oblasti s vlnovou délkou $570 \mathrm{nm}$. Jakou velikost kuliček bychom potřebovali, aby vyzařovaly oranžově na vlnové délce $590 \mathrm{nm}$? (3b)
    Nápověda: $\ce {CdSe}$ je polovodič, má tedy plně obsazený elektronový pás, pak (úzký!) zakázaný pás a nakonec prázdný vodivostní pás. Tedy musíme uvažovat, že vyzařovaný foton odpovídá přeskoku z vodivostního pásu, kde jsou zase stavy známé z nekonečné potenciálové jámy, do obsazeného pásu. Všechny energie vyzařovaných fotonů tedy budou posunuty o neznámou konstantní hodnotu odpovídající šířce zakázaného pásu.

Bonus: Nakonec pro ty, které by mrzelo, kdyby si nezaintegrovali – 1s orbital atomu vodíku má sféricky symetrickou vlnovou funkci s radiálním průběhem $\psi (r) = \frac {e^{-r/a_0}}{\sqrt {\pi }a_0^{3/2}}$, kde $a_0=\frac {4\pi \epsilon _0\hbar ^2}{me^2}$ je Bohrův poloměr. Protože orbitaly jakožto funkce tří prostorových proměnných by se nám špatně vykreslovaly, raději zobrazujeme oblast, ve které se bude elektron s velkou pravděpodobností vyskytovat. Jaký je poloměr sféry centrované na jádře, ve které se elektron bude vyskytovat s pravděpodobností $95 \mathrm{\%}$? (+2b)

Předčasná Mikulášská nadílka.

(10 bodů)6. Série 35. Ročníku - S. laserujeme

  1. Jak velká musí být apertura prostorového filtru, jestliže jsme pro jeho sestavení použili čočku o průměru $40 \mathrm{cm}$ a ohniskové vzdálenosti $4 \mathrm{m}$? Laserový svazek s gaussovským profilem má na vstupu průměr $30 \mathrm{cm}$ a vlnovou délku $1~053 nm$. Poloměr ohniska (tedy parametr $\sigma $) gaussovského svazku můžeme vypočítat podle vzorce

\[\begin{equation*} r = \frac {2}{\pi }\lambda \frac {f}{D} , \end {equation*}\] kde $D$ je průměr svazku, $f$ je ohnisková vzdálenost čočky a $\lambda $ je vlnová délka laseru.

  1. Jakou energii musí mít laserový svazek, který je fokusován na povrch palivové peletky o poloměru $1 \mathrm{mm}$, aby byla dosažena intenzita v ohnisku $10^{14} W.cm^{-2}$? Poloměr ohniska je $25 \mathrm{\micro m}$ a délka pulzu $10 \mathrm{ns}$. Kolik svazků celkem potřebujeme, abychom rovnoměrně pokryli povrch peletky? Jaká je jejich celková energie?
  2. Jakou energii musí mít laserový, fokusovaný tak, že na povrchu peletky nemá ohnisko, ale průměr svazku odpovídá průměru peletky? Chceme s ním dosáhnout stejné intenzity, jako v předchozím případě. Předpokládejte, že takový svazek máme jeden a že je schopný homogenně ozářit celou peletku „ze všech stran“.

(10 bodů)5. Série 35. Ročníku - S. stabilizujeme

  1. Jakou intenzitu musí mít laser o vlnové délce $351 \mathrm{nm}$, aby prostřednictvím ablace povrchu palivové peletky stabilizoval Rayleighovu-Taylorovu (RT) nestabilitu? Předpokládejte, že rozhraní ablátoru s DT ledem je vlnité s vlnovou délkou
  1. $0,2 \mathrm{\micro m}$,
  2. $5 \mathrm{\micro m}$.
  1. Jak se změní intenzita laseru, pokud na peletku aplikujeme ještě magnetické pole o velikosti $5 \mathrm{T}$?
  2. Co dalšího může napomoci minimalizovat RT nestabilitu?

(10 bodů)4. Série 35. Ročníku - S. svítíme

  1. V jaké vzdálenosti od povrchu terče (předpokládejte, že je z uhlíku a pro laser o vlnové délce $351 \mathrm{nm}$) se nachází kritický povrch a v jaké vzdálenosti dochází ke vzniku dvouplazmonového rozpadu, pokud je charakteristická délka plazmatu1) $50 \mathrm{\micro m}$? Dále předpokládejte
  1. exponenciální pokles hustoty plazmatu s rostoucí vzdáleností od terče,
  2. lineární pokles hustoty plazmatu s rostoucí vzdáleností od terče.
  1. Jakou musí mít elektrony energii, aby prošly od kritického povrchu ke skutečnému povrchu terče? Pro dosah elektronů v uhlíkovém plazmatu využijte empirický vztah $R = 0{,}933~4 E^{1{,}756~7}$, kde $E$ je v $\mathrm{MeV}$ a $R$ je v $\mathrm{g.cm^{-2}}$.
  2. Na jaké délce se elektrony v elektrickém poli plazmové vlny urychlí na tyto energie?
  3. Jaké vlnové délky rozptýleného světla můžeme pozorovat v případě stimulovaného Ramanova rozptylu pro laser o vlnové délce $351 \mathrm{nm}$?
1)
Hustota plazmatu $n_e$ v závislosti na vzdálenosti od terče se typicky vyjadřuje jako funkce $n_e = \f {f}{\frac {x}{x_c}}$, kde $x$ je vzdálenost od terče a $x_c$ je tzv. charakteristická delka plazmatu, která představuje škálovací parametr od terče.
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz