Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)
ostatní
(9 bodů)4. Série 30. Ročníku - P. statistikův denní chléb
Známe to všichni, krajíc chleba namazaný medem nebo marmeládou, zakousneme se a najednou je kapka mazadla na ruce a jsme za prasata. Spočítejte, jak závisí pravděpodobnost, že v krajíci bude díra skrz naskrz, v závislosti na jeho tloušťce. Model kynutí těsta necháme na vás. (Třeba rovnoměrně rozmístěné bubliny s exponenciálně rozděleným poloměrem je dobrý model.)
Michal se pobryndal.
(10 bodů)4. Série 30. Ročníku - S. testovací
- Zkuste vlastními slovy popsat, k čemu a jak se používá testování hypotéz (postačí vlastními slovy popsat následující: hypotéza a alternativa, chyba 1. a 2. druhu, hladina testu, testová statistika, kritický obor testu, $p$-hodnota testu pro konkrétní naměřená data). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
- V přiloženém datovém souboru testovani1.csv najdete naměřené hodnoty určité fyzikální veličiny. Pomocí jednovýběrového $t$-testu otestujte, zda je skutečná hodnota měřené fyzikální veličiny rovna $20$. Dále předpokládejme, že je naším cílem ukázat, že hodnota měřené fyzikální veličiny je větší než $20$. Použijte vhodnou jednostrannou modifikaci $t$-testu k tomu, abyste toto tvrzení ověřili (dejte si pozor na správné zvolení hypotézy a alternativy).
- V přiloženém datovém souboru testovani2.csv najdete naměřené hodnoty 2 různých fyzikálních veličin. Představujme si, že se jedná o měření stejné fyzikální charakteristiky ale za různých vnějších podmínek (teplota, tlak atd.). Pomocí dvouvýběrového $z$-testu otestujte hypotézu, že hodnota této fyzikální charakteristiky je pro obě volby vnějších podmínek stejná.
- Použijte stejná data jako v seriálové úloze z první série a pomocí Kolmogorovova-Smirnovova testu určete, který ze 4 vzorků dat pochází z normálního rozdělení a který vzorek pochází z exponenciálního rozdělení.
Bonus: Předpokládejte, že máte k dispozici měření 2 fyzikálních veličin (tedy 2 sady naměřených hodnot), kde jsou všechna měření na sobě nezávislá. Odvoďte upravený dvouvýběrový $z$-test, který by testoval hypotézu, že skutečná hodnota první měřené fyzikální veličiny je dvojnásobek skutečné hodnoty druhé měřené fyzikální veličiny. Pro udělení bodů je nutné a postačuje odvodit podobu testové statistiky a kritického oboru (Nápověda: Použijte vícerozměrnou verzi CLV, kde vhodně zvolíte funkci $f$, a dále postupujte analogicky jako u odvození klasického dvouvýběrového $z$-testu.).
Pro práci s daty použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.
Michal chtěl otestovat, jak těžké úlohy řešitelé zvládnou.
(3 body)3. Série 30. Ročníku - 1. dlouhý film
Stahujete si svůj oblíbený film o velikosti $12\; \mathrm{GB}$ rychlostí $10\; \mathrm{MB/s}$. Uvažujte, že signál se po kroucené dvojlince pohybuje rychlostí světla a modulace rozprostírá přenosovou rychlost rovnoměrně, tzn. byla-li by $1\; \mathrm{b/s}$, musíme přijmout signál za celou sekundu k obdržení $1$ bitu informace. Jak dlouhý úsek kabelu dokáže film zaplnit svými daty, pokud se bude šířit dostatečně dlouhým kabelem?
Kolega tvrdil Michalovi, že 100Gb ethernet má rámce menší než čip.
(12 bodů)3. Série 30. Ročníku - E. reflexní náramek
Změřte co nejvíce charakteristik samonavíjecího reflexního náramku. Zajímá nás především:
- Náramek je vyztužen kusem plechu, který může být ohnut podélně (svinutý náramek) nebo příčně (narovnaný náramek). Jaký poloměr křivosti mají tyto ohyby, pokud na plech nepůsobí vnější síla?
- Pokud náramek narovnáme a budeme ohýbat v jednom místě, při jakém úhlu přejde do ohnutého stavu? Při jakém úhlu se opět narovná? (Pozorujeme hysterezi?)
- Jaký moment síly je potřebný k ohnutí náramku?
- Je některý ze stavů náramku (svinutý nebo narovnaný) energeticky výhodnější? Odhadněte o kolik.
Erikovi se ne a ne ohnout.
(10 bodů)3. Série 30. Ročníku - S. limitní
- Zkuste vlastními slovy popsat postup konstrukce intervalových odhadů střední hodnoty v případě obecného rozdělení měřených dat (postačí vlastními slovy popsat následující: centrální limitní věta a předpoklady jejího použití, kovariance a korelace (a jejich odhady), vícerozměrná centrální limitní věta a předpoklady jejího použití, zákon šíření nejistot a kdy ho lze použít). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
- V přiloženém datovém souboru mereni3-1.csv najdete výsledky měření určité fyzikální veličiny $v$. Předpokládejme, že si nemůžeme být jisti, zda mají měřená data normální rozdělení. Vyjádřete nejistotu měření této fyzikální veličiny (nejistotu typu B neuvažujte), zkonstruujte intervalový odhady na základě CLV a stručně interpretujte jeho význam. Jak by se změnily výsledky a interpretace, pokud bychom měli k dispozici jen čtvrtinu měření (řekněme první čtvrtinu dat z datového souboru)?
- Předpokládejme, že naším cílem je naměřit fyzikální veličiny $x$ a $y$, které budeme chtít využít pro dosazení do vzorce $v = \frac{1}{2} x y^2$. Předpokládejme, že díky znalosti způsobu měření jsme si jisti, že jsou všechna měření na sobě nezávislá a ze zpracování naměřených dat měření máme následující výsledky, které jsou založeny na velkém počtu měření (více než 30 měření každé fyzikální veličiny) $x = (5,\! 2 \pm 0,\! 1)$, $y = (12,\! 84 \pm 0,\! 06)$. Určete odhad fyzikální veličiny $v$ a nejistotu měření fyzikální veličiny $v$.
Nápověda: Mohly by se vám hodit následující vztahy: $$\frac{\partial}{\partial x} \( \frac {1}{2} x y^2 \) = \frac {1}{2} y^2\, ,$$ $$\frac{\partial}{\partial y} \( \frac {1}{2} x y^2 \) = x y \, .$$ * Pomocí simulace ve výpočetním prostředí //R// demonstrujte platnost centrální limitní věty. Tj. generujte $n$-tice nezávislých realizací náhodné veličiny, která nemá normální rozdělení (pro tento případ použijte exponenciální, rovnoměrné a Poissonovo rozdělení s libovolně zvolenými parametry) a na histogramu ukažte, že pokud na data provedeme následující transformaci $\sqrt{n}\frac{\overline{x_n - \mu}}{S_n}\, ,$ takto transformovaná data už budou rozdělena přibližně podle normálního rozdělení $N(0,1)$. (Součástí hodnocení bude i hodnocení vzhledu grafů – zejména vhodně zvolené popisky os a legenda.)
Bonus: Předpokládejme, že naším cílem je naměřit fyzikální veličiny $x$ a $y$, které budeme chtít dosadit do vzorce $$v = x^2 \sin{y}\, .$$ Uvažujme nejobecnější model měření (tj. měřená data nemají normální rozdělení a měření různých fyzikálních veličin na sobě mohou být závislá). V datovém souboru mereni3-2.csv máme výsledky měření fyzikálních veličin $x$ a $y$, určete nejistotu určení veličiny $v$ a zkonstruujte pro ni intervalový odhad.
Michal se pokusil vymyslet limitně těžké zadání seriálové úlohy.
(12 bodů)2. Série 30. Ročníku - E. jedno plnotučné, prosím
Tučnější mléko by mělo být „bělejší“ – více světla rozptýlí a méně propustí skrz. Proveďte měření tučnosti mléka na základě rozptylu světla, přičemž jako barevnou škálu použijte přiložený papírek (pokud jste neřešili první sérii a chcete obdržet papírek, napište nám na fykos@fykos.cz). Rozdíly nejlépe vyniknou, pokud do různých druhů mléka budete přidávat barvivo tak, aby jej v mléku byla stejná (malá) koncentrace. Jako barvivo můžete použít černou tuš. Samozřejmě je možno použít jakékoliv jiné barvivo, ale pak si budete muset vyrobit vlastní barevnou škálu, kterou prosím přiložte k řešení. Zrealizujte měření pro různé druhy mléka a směsi mléka a vody. Diskutujte spolehlivost určení obsahu tuku.
Mára byl bledý jako stěna.
(10 bodů)2. Série 30. Ročníku - S. odhadnutelná
- Zkuste vlastními slovy popsat, k čemu slouží intervalový odhad střední hodnoty v normálním rozdělení a uveďte jeho fyzikální interpretaci (postačí vlastními slovy popsat následující: fyzikální interpretace odhadu střední hodnoty, rozdíl mezi (bodovým) odhadem a intervalovým odhadem, nejdůležitější vlastnost intervalového odhadu, metoda zkráceného zápisu intervalového odhadu, nejistota měření). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
- V přiloženém datovém souboru mereni1.csv najdete naměřené hodnoty určité fyzikální veličiny (uvažujte nejistotu typu B $s_\mathrm{B} = 0,\! 1$ ). Zkonstruujte z těchto dat bodový i intervalový odhad měřené fyzikální veličiny a krátce interpretujte jejich význam.
- Předpokládejme, že měříme určitou fyzikální veličinu a víme, že vlivem použité metody měření budou mít naměřená data rozptyl rovný konstantě $c$ (nejistotu typu B neuvažujte). Kolik musíme přibližně provést měření, abychom dosáhli nejistoty měření menší než $s$?
- V přiloženém datovém souboru mereni2.csv najdete data měření stejné fyzikální veličiny dvěma různými způsoby (nejistotu typu B neuvažujte). U které metody byla použitá měřící aparatura přesnější? Který způsob měření dal přesnější výsledek měření? U obou otázek své závěry i stručně zdůvodněte.
Bonus: Zkuste odvodit, že v normálním rozdělení je výběrový rozptyl nestranným odhadem skutečného rozptylu (tj. střední hodnota výběrového rozptylu je rovna skutečnému rozptylu).
Pro řešení tohoto úkolu můžete použít libovolné zdroje (pokud je budete řádně citovat). Pro práci s daty použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.
Michal si dal v zadání pozor na hrubé chyby.
(5 bodů)1. Série 30. Ročníku - 3. hopsa hejsa
Mějme ideální hopík dokonalé odrazivosti a zanedbatelných rozměrů. Tento hopík hodíme z nekonečných schodů, kde jeden schod má výšku $h$ a délku $l$. Odrazy probíhají beze tření. Popište závislost nejvyšší dosažené výšky (měřeno od prvního schodu) hopíku po $n$-tém odrazu na počátečních parametrech.
Lubošek potkal v městské dopravě Mikuláše.
(7 bodů)1. Série 30. Ročníku - 5. na procházce
Katka si vyšla ráno před přednáškou na procházku, aby vyvenčila svého potkana. Vyšla s ním na rovný palouk, a když byl potkan ve vzdálenosti $x_{1}=50\; \mathrm{m}$ od ní, hodila mu míček rychlostí $v_{0}=25\; \mathrm{m}\cdot\mathrm{s}^{-1}$ pod úhlem $α_{0}$. V okamžiku výhozu potkan vyběhl směrem ke Katce rychlostí $v_{1} = 5\; \mathrm{m}\cdot\mathrm{s}^{-1}$. Nalezněte obecnou závislost úhlu $φ$ na čase, kde $φ(t)$ označuje úhel mezi vodorovnou rovinou a spojnicí potkana a míčku, a vykreslete tuto závislost do grafu. Na základě grafu určete, zda je možné, aby míček zakryl potkanovi Slunce, jenž se nachází ve výšce $φ_{0}=50\; \mathrm{°}$ přímo před potkanem. Počítejte s tíhovým zrychlením $g=9,\! 81\; \mathrm{m}\cdot \mathrm{s}^{-2}$ a pro zjednodušení uvažujte, že házíme z nulové výšky.
Mirek pozoroval, co se děje v trávě.
(12 bodů)1. Série 30. Ročníku - E. Pechschnitte
Padá krajíc namazanou stranou dolů? Zkoumejte experimentálně tento Murphyho zákon s důrazem na statistiku! Záleží na rozměrech krajíce, složení a typu vrstvy? K experimentálním výsledkům hledejte teoretická zdůvodnění. Pro vaše měření použijte toastový chléb.
Terka má stůl ve špatné výšce.