Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)
mechanika hmotného bodu
(3 body)4. Série 25. Ročníku - 3. kámen letí
Hodíme kulatý kámen o hmotnosti $m$ z výšky $h$ nad hladinou do rybníka o hloubce $d$. Přibližně za jak dlouho spadne na dno? Jak se výsledek změní, když kámen nebude kulatý, ale placatý?
Dominika házela šutry.
(4 body)4. Série 25. Ročníku - 4. stavinoha
Model rakety má motůrek, jenž dává konstantní tah, dokud má palivo o počáteční hmotnosti $m_{p}$. Prázdná raketa váží $m_{0}$ a motor palivo spaluje lineárně s časem. Do jaké výšky může raketa vyletět, letí-li v homogenním gravitačním poli a zanedbáme-li odpor vzduchu?
Michal odpaloval rakety.
(2 body)3. Série 25. Ročníku - 1. Wattův regulátor
Mějme dvě těžké kuličky. Každá z nich je připojena tyčkou do kloubu (z opačných stran). Obě koule se mohou vychylovat pouze v jedné svislé rovině. Celou soustavou začneme otáčet okolo svislé osy procházející kloubkem. Jak závisí odchylka tyček na úhlové rychlosti?
Regulovčík Lukáš.
(4 body)3. Série 25. Ročníku - 4. těžký úděl
Při řezání stromů musí zahradník počítat s lecjakými problémy. Uvažujme větev připojenou k nepružnému lanu (tj. tuhost roste nade všechny meze) přes kladku. Dole stojí dva brigádníci, kteří jistí větev, aby nespadla do bazénu. Větev spadne volným pádem z výšky $h$, než se provaz napne. Za určitých okolností brigádníci držící druhý konec lana vyjedou tak vysoko, že narazí do kladky. Stanovte podmínky, za jakých bude řezání bezpečné.
Nápověda: Uvažujte nejprve chování dvou hmotností na ledě, které jsou spojeny nepružným lanem a mají různé rychlosti.
Mikuláš vyprávěl Jakubovi, jak na něj spadla větev.
(8 bodů)3. Série 25. Ročníku - E. hopík
Kutálejte hopík po vodorovné podlaze kolmo proti stěně. Při odrazu od stěny hopík vyskočí. Jak závisí vzdálenost bodu dopadu od stěny na počáteční rychlosti hopíku, případně dalších parametrech?
Poznámka: Užitečné informace k úloze naleznete ve studijním textu na internetu.
Jáchym přemýšlel nad novými zdroji energie.
(4 body)2. Série 25. Ročníku - 4. kulička ve vlaku
Mějme svislou desku a ve vzdálenosti $d$ od ní kuličku o hmotnosti $m$ na závěsu délky $l$. V určitém okamžiku se celá soustava začne pohybovat se zrychlením $a$ ve směru kolmém na desku. Určete podmínku pro velikost zrychlení, aby se kulička desky dotkla, a za jak dlouho k tomu dojde, víte-li, že vzdálenost $d$ není větší než jedna pětina $l$.
Petr.
(4 body)2. Série 25. Ročníku - 5. Mikulášovy kučery
Lidský vlas má u některých lidí tendenci zaujmout zakroucený tvar. Uvažujme vlas, který má v klidovém stavu dané parametry podobně jako stočená pružinka (poloměr, sklon, materiálové konstanty). Spočítejte, jak se vlas prodlouží, když ho nejprve položíme vodorovně na stůl a potom ho pověsíme svisle dolů. Uvažujte hodně stočený vlas, tj. s malým sklonem.
Jakub studoval vlasy kamaráda.
(5 bodů)2. Série 25. Ročníku - P. výtahová
Je možné, že se při pádu výtahu člověk před jistou smrtí zachrání dobře časovaným výskokem? Zjistěte, při jaké největší rychlosti pádu by to bylo možné (rychlost výtahu těšně před dopadem, při které již cestující zahynou si vyhledejte nebo odhadněte).
Terka nechtěla zemřít.
(2 body)1. Série 25. Ročníku - 2. plavec v řece
Plavec se snaží přeplavat řeku, v níž teče voda rychlostí $v_{r}=2\;\mathrm{km/h}$. Sám přitom plave rychlostí $1\;\mathrm{m/s}$. Po jaké dráze a jakým směrem musí plavat, aby se nejméně namohl? V jakém místě a za jak dlouho vyplave na druhý břeh? A co aby jeho dráha byla nejkratší? Šířka řeky je $d=10\;\mathrm{m}$.
Vymyslel plavec Petr.
(4 body)1. Série 25. Ročníku - 4. drrrrr
Mezi dvěma opačně nabitými deskami se sem a tam odráží vodivá kulička zanedbatelných rozměrů. S jakou frekvencí se pohybuje? Napětí mezi deskami je $U$. Při nárazu se kulička nabije na náboj velikosti $Q$ shodný s polaritou desky. Koeficient restituce je $k$.
Bonus: Odpovídá výkon na tomto rezistoru energetickým ztrátám při nárazech?
Poznámka: Koeficient restituce je poměr kinetických energií po nárazu a před ním.
Jáchym hodil do stroje kuličku.