Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)
mechanika tuhého tělesa
(5 bodů)5. Série 27. Ročníku - 5. hlídání dětí
Mějme houpačku zavěšenou na dvou svislých lanech délky $l=1,5\;\mathrm{m}$ na vodorovné tyči o poloměru $r=4\;\mathrm{cm}$. Dítěti sedícímu na houpačce udělíme v dolní úvrati takovou rychlost $v_{0}$, aby dítě vykonalo celou otočku kolem horizontální tyče a lana byla během namotávání stále napnutá. Zároveň chceme, aby počáteční rychlost byla nejmenší možná. Určete rozdíl úhlové rychlosti $ω_{1}$ houpačky s dítětem po návratu do dolní úvrati a počáteční úhlové rychlosti $ω_{0}$.
Nápověda: Pro výpočet odstředivého zrychlení můžete uvažovat, že se dítě pohybuje lokálně po kružnici.
Mirek si vždycky rád hrál s mladšími sourozenci.
(5 bodů)3. Série 27. Ročníku - 5. mig-mig!
Chudák hladový kojot chce ulovit proradného ptáka Uličníka a přichystal na něj následující past: na pevné lano přiváže 500tunovou kovadlinu, přehodí ji přes větev tak, aby visela nad silnicí, a bude čekat. Kolikrát musí lano kolem větve obtočit, jestliže chce kovadlinu udržet ve vzduchu pouze vlastní vahou? Předpokládejte, že hmotnost lana je vůči hmotnosti kojota zanedbatelná.
Mirek vždy fandil kojotovi.
(8 bodů)2. Série 27. Ročníku - E. kutululů
Máme nakloněnou rovinu, na které postrčíme míček, aby se začal kutálet bez prokluzování směrem nahoru po nakloněné rovině. Změřte závislost rychlosti míčku na čase a určete závislost ztráty energie na čase. Nakloněná rovina nechť svírá úhel s vodorovnou rovinou úhel $α=10°$. Nezapomeňte popsat parametry vašeho míčku.
Karel se zamyslel nad výrokem koulelo se koulelo.
(2 body)6. Série 26. Ročníku - 2. roztržitý drát
Jak by musel být minimálně dlouhý ocelový drát ve stočeném stavu, aby se při volném zavěšení za jeho jeden konec přetrhl? Používáme ocelový drát o hustotě $ρ=7900\;\mathrm{kg}\cdot \mathrm{m}^{-3}$, průměru $D=1\;\mathrm{mm}$ a mezi pevnosti $σ_{max}=400\; \jd{MPa}$. Uvažujte, že jsme v homogenním tíhovém poli o intenzitě $g=9.81\;\mathrm{m}\cdot \mathrm{s}^{-2}$.
Bonus: Uvažujte teď nejdelší drát, který se ještě nepřetrhne. O kolik procent se protáhne po zavěšení? Youngův modul pružnosti v tahu použité oceli je $E=200\;\jd{GPa}$.
Karel s drátem v oku
(4 body)6. Série 26. Ročníku - 5. problémy baseballistů
Mějme hráče baseballu, který drží v rukou baseballovou pálku délky $L$ a hmotnosti $m$ a chystá se na odpal míčku. Jako vhodné přiblížení se držme toho, že hráč může otáčet pálkou jen okolo fixované osy, která je kolmá na osu pálky a prochází na jejím konci rukama odpalujícího hráče. Pálkou otáčí úhlovou rychlostí $ω$. V jaké vzdálenosti $l$ od konce pálky má hráč odpálit míček, aby nárazová síla na hráčovy ruce byla co nejmenší? Pálka je tenká homogenní tyč.
Dostal míčkem Radomír.
(8 bodů)6. Série 26. Ročníku - E. ztroskotání balónu
Když pustíte nafukovací balónek z výšky, po chvíli bude padat s přibližně konstantní rychlostí. Změřte, jak závisí tato rychlost na velikosti balónku a na hmotnosti závaží, které pod něj zavěsíte.
Pikoš
(4 body)5. Série 26. Ročníku - 3. plážové válení
Mějme dva půlválce ležící na sobě jako na obrázku. Spodní má poloměr $r$ a horní poloměr $R$. Pro jaký poloměr $R$ s pevným $r$ je soustava stabilní?
Bonus: V případech, kdy je soustava stabilní (pokud vychýlíme vrchní válec z rovnovážné polohy, tak začne provádět malé kmity), s jakou periodou bude kmitat?
Karel neměl co dělat a tak se válel.
(4 body)5. Série 26. Ročníku - 4. zašpalkovat
Může zašpalkované letadlo pustit motory na zemi na plný tah a zůstat na místě? Pokuste se o obecné vyjádření uvažující různé materiály kola, špalku i podlahy. Změní se to, bude-li špalek vysoký akorát na dotek kola?
Michal obdivoval letiště.
(2 body)4. Série 26. Ročníku - 2. vesmírná skleróza
Jaký je poměr objemu Země ku objemu Měsíce? Vypočítejte jej pouze ze znalosti, že poměr jejich hmotností je přibližně 81 a že intenzita gravitačního pole je na povrchu Země přibližně šestkrát vyšší než na povrchu Měsíce.
Karel prohýřil celou noc záludnými kvízy.
(4 body)4. Série 26. Ročníku - 4. rána kladivem
Pokud udeříte kladivem do jednoho konce kovové tyče (jejíž průměr je mnohem menší než její délka), začnou se okolo ní šířit zvukové vlny. Narýsujte a co nejpřesněji popište, jak se bude s časem měnit tvar vlnoploch v rovině tyče. Mezi vašimi obrázky by měly být znázorněny vlnoplochy, a to v okamžicích, kdy se vlna dostala na druhý konec tyče a kdy se po odrazu vrátila opět do místa úderu. Nezapomeňte konstrukci popsat. Uvažujte pouze podélné kmity tyče. Poměr rychlosti šíření zvuku v tyči a ve vzduchu je $β=v_{tyc}⁄v_{vzduch}=10$.
Lukáš se prohraboval starými archivy.