Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)
mechanika hmotného bodu
(4 body)3. Série 29. Ročníku - 4. ubrzdi to
Po sebeprudším sešlápnutí brzdového pedálu nezačne auto brzdit okamžitě, ale brzdná síla po dobu $t_{\mathrm{r}}$ lineárně narůstá až na hodnotu $F_\mathrm{m}$. Koeficient statického třetí mezi pneumatikou a vozovkou je $f$. Jakou maximální rychlostí se může tento automobil pohybovat, aby ani při nouzovém brzdění nedošlo ke smyku?
Michal procházel kolem kolony.
(5 bodů)3. Série 29. Ročníku - 5. sešit dezertér
Na lavici se sklonem $α=5\dg$ leží sešit formátu A4 o hmotnosti $m$, mezi lavicí a sešitem působí statická třecí síla s koeficientem $f_{0}=0,\! 52$. Poté kdosi do lavice strčí a ta začne kmitat ve směru sklonu desky s frekvencí $ν=10\;\mathrm{Hz}$ a amplitudou $A=1\;\mathrm{mm}$.
- Určete, jakou dodatečnou silou musíme na sešit tlačit (kolmo na lavici), aby se sešit nezačal pohybovat.
- Určete, za jak dlouho sešit spadne z lavice, jestliže je na počátku jeho spodní hrana (ta kratší) na dolním okraji lavice. Dynamický koeficient tření je $f$, sešit považujte za tuhou desku.
Mirkovy sešity se snaží prchnout z přednášek v F1.
(2 body)2. Série 29. Ročníku - 1. potkan na ledě
Na ledě běží potkan rychlostí $v$. Najednou se rozhodne, že se chce otočit o $90\dg$ tak, aby po otočení běžel pořád rychlostí o velikosti $v$, ale v novém směru. Jaký nejmenší čas na to potřebuje? Předpokládejte, že potkaní nožičky se mohou po ledě pohybovat nezávisle; koeficient tření mezi nožičkami a ledem je $f$.
Xellos dostal smyk.
(3 body)2. Série 29. Ročníku - 3. fatální upuštění
Z rakety obíhající po kružnici ve výšce $h=2000\;\mathrm{km}$ nad Zemí hodíme směrem k Zemi nebohý šroubovák rychlostí $v=5\;\mathrm{km}\cdot \textrm{h}^{-1}$ vůči lodi. Za jak dlouho dopadne?
Karel nemá rád šroubováky.
(2 body)1. Série 29. Ročníku - 2. výskok z vlaku
Ve vlaku, který se může pohybovat po kolejích bez tření, stojí 2 lidé, každý s hmotností $m$. Kdy dosáhne vlak větší rychlosti? Když oba vyskočí z vlaku naráz, nebo když budou vyskakovat z vlaku postupně? Člověk vyskočí z vlaku relativní rychlostí $u$ (rychlost vyskakujícího člověka vůči vlaku po výskoku).
Radomír vyskakoval z vlaku.
(4 body)5. Série 28. Ročníku - 3. matfyzácká honička
$N$ lidí se rozhodne hrát na honěnou, ale ne jen tak ledajakou. Na začátku se rozmístí do vrcholů pravidelného $N$-úhelníku o straně délky $a$. Hra poté probíhá tak, že každý honí (to znamená běží přímo za ním) svého souseda po pravé ruce (proti směru hodinových ručiček). Každý se přitom pohybuje rychlostí o konstantní velikosti $v$. Popište průběh hry (trajektorie, po kterých se hráči pohybují) a zjistěte, za jak dlouho hra skončí v závislosti na parametrech $N$, $a$, $v$.
Kuba Vošmera maturant.
(4 body)5. Série 28. Ročníku - 4. lijavec
Podzimní počasí je občas stejně rozmařilé, jako to jarní, a tak nás nezřídka může na cestě zastihnout nečekaný liják. Někteří šťastlivci s sebou nosí deštník. Odhadněte, jak velkým tlakem dokáže hustý déšť na deštník působit a porovnejte tíhovou sílu deštníku s tlakovou silou deště. Parametry deštníku vhodně zvolte.
Mirek hledal důvody, proč nezávidět kolemjdoucím jejich záštitu proti dešti.
(6 bodů)5. Série 28. Ročníku - S. mapovací
- Ukažte, že pro libovolné hodnoty parametrů $K$ a $T$ můžete Standardní mapu ze seriálu vyjádřit jako
$$x_{n} = x_{n-1} y_{n-1},$$
$$\\ y_n = y_{n-1} K \sin(x),$$
kde $x$, $y$ jsou nějak přeškálovaná $dφ⁄dt$, $φ$. Určete fyzikální rozměr $K$, $x$, $y$.
- Podívejte se znova na model nakopávaného rotoru ze seriálu a vezměte tentokrát předávaný impuls $I(φ)=I_{0}$, po periodě $T$ pak $I(φ)=-I_{0}$, po další zase $I_{0}$ a takto dokola kopejte rotor tam a zpátky.
- Napište mapu $φ_{n},dφ⁄dt_{n}$ na základě hodnot $φ_{n-1},dφ⁄dt_{n-1}$ před dvojkopem ± $I_{0}$.
- Bude zkonstruovaná mapa chaotická? Proč ne?
- Vyřešte $φ_{n},dφ⁄dt_{n}$ na základě nějakých počátečních podmínek $φ_{0},dφ⁄dt_{0}$ pro libovolné $n$.
Bonus: Zkuste podle ingrediencí ze seriálu navrhnout kopání, které bude dávat chaotickou dynamiku. Dávejte ale pozor na to, že $φ$ je 2π-periodické a že by se vám $dφ⁄dt$ nemělo vyšroubovat kopáním do nekonečna.
(4 body)4. Série 28. Ročníku - 3. nerozlučné pouto
Dva sešity A460 zasuneme do sebe tak, že se střídají listy jednoho a druhého sešitu, a položíme je na vodorovný stůl. Jakou práci musíme vykonat, abychom sešity od sebe oddělili, jestliže na sebe listy působí pouze vlastní vahou? Předpokládejte, že taháme v rovině sešitů kolmo na hřbet jednoho z nich a že se na začátku listy zcela překrývají.
Mirkovi se nedařilo oddělit algebru od analýzy.
(4 body)4. Série 28. Ročníku - 4. ach ta tíže
Určete, jaké je tíhové zrychlení na povrchu neutronové hvězdy v závislosti na rovnoběžce. Jak velká slapová síla by působila na předmět vysoký $h=1\;\mathrm{m}$ a s hmotností $m=1\;\mathrm{kg}$ v blízkosti jejího povrchu? S jakou energií by dopadl na povrch neutronové hvězdy marshmallow upuštěný z výšky $h?$ Neutronová hvězda má poloměr $R$ a rotuje s periodou rotace $T$. Můžete ji považovat za kulovou, i když přesně kulová není. Najděte si hodnoty pro typickou neutronovou hvězdu a udejte jak obecné, tak konkrétní číselné výsledky.
Karel se zasnil nad drtivou silou neutronových hvězd a jejich skvělou neinercialitou.