Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

mechanika hmotného bodu

(10 bodů)5. Série 33. Ročníku - S. mini a maxi

  1. Máme PET lahev s vodou, která stojí na rozlehlé rovině. V jaké výšce bychom měli vytvořit v láhvi malý otvor, aby voda dostříkla do nejdále od láhve? Láhev necháme stát na rovině a otvor prochází kolmo stěnou.
  2. Kam bychom měli umístit otvor (viz předchozí podúloha), pokud chceme, aby byl dostřik nejdelší po jedné minutě? Předpokládejte, že láhev má konstantní průřez $S$ a otvor má výrazně menší průřez $s$. Pro numerické řešení odhadněte rozumné hodnoty konstant.
  3. Jaký může mít baterie maximální výkon na spotřebiči, pokud má elektromotorické napětí $U_e$ a vnitřní odpor $R_i$? Pro jaký odpor spotřebiče to nastane? Respektive pro jakou impedanci to nastane, pokud bude obvod tvořen rezistorem, cívkou a kondenzátorem?
  4. Jak nejblíže se k sobě mohou dostat dvě jádra dusíku $14$, která se pohybují se střední kvadratickou rychlostí odpovídající plynu za normálních podmínek?
  5. Najděte maximální možnou teplotu, kterou by mohl mít plyn, ve kterém by probíhal děj $p = p_0 e^{-\alpha V}$, kde $\alpha $ je kladná konstanta a $p_0$ je tlak plynu v základním stavu.

Karel napínal až do po poslední chvíle.

(3 body)4. Série 33. Ročníku - 1. čibonaut

Máme kosmonauta s hmotností $M$, který se v beztížném stavu vznáší ve vzdálenosti $l$ od stěny vesmírné stanice. Najednou se rozhodne, že těžké nářadí s hmotností $m$, které dosud držel v ruce, hodí po stanici ve směru kolmém na její stěnu. V jaké vzdálenosti od stěny kosmonaut bude, až do ní nářadí narazí?

Karel chtěl zadat tento název úlohy.

(3 body)4. Série 33. Ročníku - 2. Machovo číslo

Letadla jsou ve vysokých hladinách letu řízena pomocí Machova čísla. Tato veličina vyjadřuje rychlost v násobku rychlosti zvuku v daném prostředí. Rychlost zvuku ve vzduchu se ovšem s výškou mění. Jaký je rozdíl mezi rychlostí letu letadla letícího při Machově čísle $0{,}85$ ve dvou různých letových hladinách FL 250 ($7 600 \mathrm{m}$) a FL 430 ($13 100 \mathrm{m}$)? V jaké hladině je rychlost vyšší a o kolik kilometrů za hodinu? Závislost rychlosti zvuku ve vzduchu na teplotě můžeme s dostatečnou přesností popsat vztahem $c =\(331{,}57+0{,}607\left \lbrace t \right \rbrace \) \jd {m.s^{-1}}$, kde $t$ je teplota ve stupních Celsia. Uvažujte standardní atmosféru, ve které klesá teplota s výškou od $0$ do $11 \mathrm{km}$ od $15 \mathrm{\C }$ o $0,65 \mathrm{\C }$ na každých $100 \mathrm{m}$ až k teplotě $-56,5 \mathrm{\C }$, která je pak konstantní až do $20 \mathrm{km}$ nad střední hladinou moře.

Karel se učil ATC.

(9 bodů)4. Série 33. Ročníku - 5. zkratka napříč časem

Jáchym se nachází v dvoudimenzionálním kartézském prostoru v bodě $J = (-2a, 0)$. Chce se co nejrychleji dostat do bodu $T = (2a, 0)$, který se (naštěstí) nachází ve stejném prostoru. Jáchym se zásadně pohybuje rychlostí o velikosti $v$. Aby to nebylo tak jednoduché, prostorem vede pojízdný pás ve tvaru přímky, procházející body $(-3a, 0)$ a $(0, a)$, po kterém se Jáchym pohybuje celkovou rychlostí $kv$. Pro jaké minimální $k \ge 1$ se Jáchymovi vyplatí jít po pásu?

Jáchym, ze života.

(8 bodů)3. Série 33. Ročníku - 4. beruška na gumě

Beruška leze rychlostí $4 \mathrm{cm\cdot s^{-1}}$. Když ji postavíme na gumu $40 \mathrm{cm}$ dlouhou, přeleze ji za $10 \mathrm{s}$. Co když ale v okamžiku, kdy beruška začne lézt, začneme gumu natahovat tak, že se její délka bude zvětšovat rychlostí $5 \mathrm{cm\cdot s^{-1}}$? Může dolézt na konec? Pokud ano, jak dlouho jí to bude trvat? Guma se roztahuje rovnoměrně a nikdy se nepřetrhne.

Matěj koukal na Vsauce.

(10 bodů)3. Série 33. Ročníku - S. vzduchová pistole podrobně

Máme vzduchovou pistoli o hmotnosti $M = 1{,}3 \mathrm{kg}$. Vystřelíme z ní diabolku (náboj), která má hmotnost $m = 0{,}50 \mathrm{g}$ a průměr $d = 4{,}5 \mathrm{mm}$.

  1. Jakou kinetickou energii bude mít náboj po výstřelu, když podle technické specifikace dosáhne rychlosti $v = 250 \mathrm{fps}$ (tedy 250 stop za sekundu)?
  2. Jaký bude zpětný ráz pistole? Zajímá nás jak rychlost, kterou by se zbraň pohybovala, kdyby nebyla upevněná, tak její hybnost.
  3. Jak se změní moment hybnosti Země, pokud vystřelíme ze zbraně rovnoběžně se zemským povrchem? Zajímají nás okamžiky, kdy měla maximální hybnost a potom, když dopadla a zcela se zastavila. Pro jednoduchost uvažujte, že zbraň je pevně spojená se Zemí (která je zcela kulatá) a že zbraň při výstřelu nezačala rotovat. Jakou úhlovou rychlost Země získá či ztratí?
  4. Jaký je spodní odhad maximálního zrychlení střely, pokud se náboj v první čtvrtině hlavně urychlí na $90 \mathrm{\%}$ maximální rychlosti? Vnitřní délka hlavně je $D =18 \mathrm{cm}$.
  5. Náboj jsme vstřelili do kousku plastelíny o hmotnosti $m\_p = 42 \mathrm{g}$, který je zavěšený na tenkém provázku délky $l = 48 \mathrm{cm}$. Pokud by náboj v plastelíně uvízl, jaká by byla maximální úhlová výchylka tohoto kyvadla?
  6. Může náboj při nárazu na lidskou pokožku překročit hodnotu plošné dopadové energie $Q\_{max} = 50 \mathrm{J\cdot cm^{-2}}$?

  7. Bonus: Nakonec se nám experiment s kyvadlem nepodařil a plastelínu jsme prostřelili. Naměřili jsme poloviční výchylku kyvadla, než jsme původně očekávali. Jaká byla výstupní rychlost náboje z plastelíny? Předpokládejte, že při průchodu plastelínou náboj nezmění směr a ani nic z plastelíny neodnese s sebou.

Karel chtěl hlouběji rozebrat standardní úlohu.

(3 body)2. Série 33. Ročníku - 1. rychlovýtah

Říká se, že lidé ve výtahu bez větších problémů snesou zrychlení $a = 2{,}50 \mathrm{m\cdot s^{-2}}$. Také bychom chtěli dorazit do plánovaného patra co nejdříve. Pokud by se výtah čtvrtinu doby jízdy rozjížděl s tímto zrychlením, polovinu doby jel konstantní rychlostí a zbývající čtvrtinu doby zpomaloval, jak vysoko by dokázal vyjet za celkovou dobu jízdy $t = 1{,}00 \mathrm{min}$?

Karel jezdí výtahem.

(3 body)2. Série 33. Ročníku - 2. slabý naviják

Uvažujme pevně zavěšenou kladku, na níž je umístěno lano zanedbatelné hmotnosti. Na jednom konci lana je upevněno závaží o hmotnosti $m_1$ a na druhém konci se ve stejné úrovni nachází naviják o hmotnosti $m_2$. V prvním případě je naviják ukotven na zemi a při navíjení lana se zvedá pouze závaží. V druhém případě je závaží pevně spojeno s navijákem tak, že při navíjení se zvedají společně závaží i naviják. Určete, ve kterém případě bude zapotřebí menší síly pro zdvihnutí závaží (a tudíž slabšího navijáku).

Vašek potřeboval sestrojit mechanizmus na zvedání sněhové radlice.

(6 bodů)2. Série 33. Ročníku - 3. Dančina (ne)rovnovážná destička

Destička tloušťky $t=1,0 \mathrm{mm}$ se šířkou $d =2,0 \mathrm{cm}$ se skládá ze dvou částí. První část o hustotě $\rho _1 =0,20 \cdot 10^{3} \mathrm{kg\cdot m^{-3}}$ má délku $l_1 = 10 \mathrm{cm}$, druhá část o hustotě $\rho _2 =2,2 \cdot 10^{3} \mathrm{kg\cdot m^{-3}}$ má délku $l_2 = 5,0 \mathrm{cm}$. Desku položíme na hladinu vody s hustotou $\rho \_v = 1{,}00 \cdot 10^{3} \mathrm{kg\cdot m^{-3}}$ a počkáme, až se ustálí v rovnovážné poloze. Jaký úhel bude svírat rovina desky s hladinou vody? Jaká část destičky zůstane trčet nad hladinou?

Danka si povídala s Peťem o mytí nádobí.

(10 bodů)2. Série 33. Ročníku - S. směs souřadnic a grafiky

  1. Určete, kolik procent první stránky vzorového řešení úlohy 26-IV-5 zabírá černá barva. Řešení této úlohy najdete na https://fykos.cz/_media/rocnik26/ulohy/pdf/uloha26_4_5.pdf.
  2. Představte si, že máte tužku, jejíž tuha má poloměr $r=0{,}8 \mathrm{mm}$. Tuha je vyrobena z grafitu v šesterečné soustavě, kde vzdálenost atomů uhlíku v jedné vrstvě je rovna $a = 2{,}46 \cdot 10^{-10} \mathrm{m}$ a jednotlivé vrstvy jsou od sebe vzdáleny $c = 6{,}71 \cdot 10^{-10} \mathrm{m}$. Jakou délku tuhy spotřebujete na pomalování celé čtvrtky A4, pokud se papír při barvení pokryje průměrně $100$ vrstvami tuhy?

\setcounter {enumi}{2}

  1. Na obrázku je zobrazena stabilní tyčová soustava, která se nachází v tíhovém poli se zrychlením $g$. Nejtlustší linka znázorňuje dokonale tuhé tyče zanedbatelné hmotnosti. Na konci těchto tyčí je na nehmotném provázku upevněno závaží o hmotnosti $m$ (na obrázku zobrazeno středně tlustou linkou). Tenké čáry symbolizují délky tyčí. Platí, že $\alpha + \beta = 45\dg $. Tyč mezi úhly $\alpha $ a $\beta $ půlí horní tyč. Tyče mohou působit silou pouze ve svém směru (žádná složka není kolmá na tyč). Tyče jsou v místech dotyku s levou stěnou pevně upevněny. Určete, které tyče jsou namáhány v tlaku a které v tahu a spočítejte velikosti sil, které na ně působí.
  2. Uvažujme spirálu, která začíná v počátku soustavy souřadné a odvíjí se rovnoměrně. Vzdálenost mezi jednotlivými závity $a$ je konstantní. Popište pohyb po této spirále ve vhodných souřadnicích.
  3. Mějme šroubovici, která se odvíjí rovnoměrně. Šroubovice má konstantní poloměr $R$ a konstantní vzdálenost mezi závity $h$. Popište pohyb po šroubovici ve vhodných souřadnicích a určete, jaká je délka jednoho závitu této šroubovice.

Bonus: Vymyslete nebo najděte (a citujte) souřadnice, které nejsou v knihovničce FO a byly by vhodné pro popis nějakého fyzikálního problému (uveďte jakého). Souřadnice popište převodem z kartézských souřadnic na vámi vybrané a zpět. Dále ukažte, jak lze ve vašich souřadnicích obecně určit vzdálenost dvou bodů.

Karel generoval problémy.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz