Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

mechanika hmotného bodu

(6 bodů)5. Série 36. Ročníku - 3. čekáme na výtah

Karel jezdí výtahem v budově, která má přízemí a nad ním dalších $12$ pater, přičemž výška jednoho patra je $h=3{,}0 \mathrm{m}$. Uvažujte, že výtah během své jízdy polovinu doby zrychluje a druhou polovinu doby zpomaluje konstantním zrychlením $a=1{,}0 \mathrm{m\cdot s^{-2}}$. S $50 \mathrm{\%}$ pravděpodobností výtah stojí v přízemí a zbytek pravděpodobnosti je rovnoměrně rozdělený mezi ostatní patra. Jaká je očekávaná doba čekání na výtah v jednotlivých patrech budovy? Zanedbejte čas otevírání dveří.

Bonus: Mějme $2$ výtahy opět v dvanáctipatrové budově. Jeden výtah bude odvolávaný do přízemí. Do jakého patra bychom měli posílat druhý, abychom minimalizovali průměrnou dobu čekání? Předpokládejte analogicky, že polovina jízd bude začínat v přízemí a druhá polovina s rovnoměrnou pravděpodobností v libovolném z dalších pater.

Karel čekává často na výtah.

(8 bodů)5. Série 36. Ročníku - 5. xenon šel na vandr

Jednou kladně ionizovaný atom xenonu vyletěl rychlostí $v=7 \mathrm{m\cdot s^{-1}}$ ze středu velké válcové cívky a začal se pohybovat homogenním magnetickým polem v rovině kolmé na magnetické siločáry. V tu chvíli cívku odpojíme od zdroje, takže její indukce začne exponenciálně klesat podle vztahu $\f {B}{t}=B_0\eu ^{-\Omega t}$, kde $B_0=1,1 \cdot 10^{-4} \mathrm{T}$ a $\Omega =600 \mathrm{s^{-1}}$. S jakou odchylkou od původního směru se atom bude pohybovat po ustálení? Nápověda:: V úloze se nebojte použít vhodnou aproximaci, nebo ji zkuste řešit numericky.

Vojta vymýšlel zadání s rozumným řešením několik hodin, ale stejně je to hnus. A to ještě neviděl řešení.

(6 bodů)4. Série 36. Ročníku - 3. uzavírka na silnici

Všichni to známe – uzavírky na silnicích a nekonečné stání na semaforech. Zelená svítí po dobu $60 \mathrm{s}$, ale než se stačí všichni rozjet, už je zase červená. Uvažujme $0{,}5 \mathrm{s}$ reakční dobu řidiče, než se rozjede poté, co se dalo do pohybu auto před ním. O kolik procent by se zvýšil počet aut, která projedou uzavírkou, kdyby se všichni ve frontě rozjeli současně? První auto stojí na úrovni semaforu, vzdálenost předních nárazníků všech aut odhadněme na $5 \mathrm{m}$ a všechna se rozjíždí rovnoměrně zrychleně po dobu $5 \mathrm{s}$ na rychlost $30 \mathrm{km\cdot h^{-1}}$, kterou pak pokračují dále do uzavírky.

U Jardy na vesnici už třetím rokem kopou kanály.

(9 bodů)4. Série 36. Ročníku - 5. vesmírná návštěva

Dva mimozemšťané bydlí každý na své kosmické stanici. Stanice se nacházejí ve volném prostoru a vzdálenost mezi nimi je $L$. Když chce jeden mimozemšťan navštívit druhého, musí nasednout do své nerelativistické rakety a doletět k sousedovi. Jaký nejkratší čas může mimozemšťan strávit na cestě tam i zpět? Hmotnost rakety s palivem je $m$, bez paliva $m_0$. Výtoková rychlost spalin je $u$, tok paliva je libovolný. Jeho soused mu žádné palivo načerpat nedovolí (sám má málo).

Jarda potřeboval, aby si nikdo nevšiml, že na chvíli zmizel z porady.

(3 body)3. Série 36. Ročníku - 1. kreativní řešení problémů

Danka připojila zahradní hadici s vnitřním průměrem $1,5 \mathrm{cm}$ na vodovodní kohoutek na koleji a druhý konec položila na okraj okna na 8. poschodí ve výšce $23 \mathrm{m}$ nad zemí. Jaký objemový průtok vody by musel kohoutek mít, aby se Dance podařilo postříkat proudem vody lidi stojící pod kolejí ve vodorovné vzdálenosti $9 \mathrm{m}$ od budovy, kteří ruší noční klid? Může se to Dance podařit, pokud voda stříká vodorovně a nefouká vítr?

Bonus: Kde nejdále mohou stát tito lidé, aby na ně Danka hadicí dostříkla, pokud je objemový průtok kohoutku $0{,}4 \mathrm{l\cdot s^{-1}}$? Danka teď může konec hadice natočit tak, aby voda stříkala pod libovolným úhlem vůči vodorovné rovině.

Dance opravdu vadí hluk v noci pod okny.

(5 bodů)3. Série 36. Ročníku - 3. bobování

figure

Matěj s Davidem se kloužou na bobech z kopce se sklonem $\alpha =29 \mathrm{\dg }$, který v jeho patě přechází ve vodorovnou zem. Oba vyrazili z klidu ze stejné výšky. Matějovy boby ujedou vždy stejnou vzdálenost $l$ po nakloněné rovině i ve vodorovné části. Protože se při vyšší zátěži boby proboří hlouběji do sněhu, uvažujte, že třecí koeficient je úměrný normálové síle jako $f(F)=kF$, kde $k$ je kladná konstanta. Určete, kolikrát dále dojede Matěj od paty kopce než David, je-li Davidova hmotnost (i s boby) o $12 \mathrm{\%}$ vyšší než Matějova. V patě kopce bobaři neztrácí žádnou energii.

Matěj se rád baví o bobech.

(6 bodů)2. Série 36. Ročníku - 4. rovnoběžná srážka

Pták Fykosák sleduje, jak se kolem něj v jeho inerciální vztažné soustavě po rovnoběžných trajektoriích pohybují konstantními nerelativistickými rychlostmi dva hmotné body. Stejně jako on najděte odpověď na otázku, jestli se pro nějakého jiného inerciálního pozorovatele můžou tyto trajektorie protnout. Pokud ano, je možné, aby se dané hmotné body při správných počátečních podmínkách srazily v tomto průsečíku? Je to konzistentní s tím, že podle Fykosáka se pohybují paralelně?

Marek J. se rád sráží.

(3 body)1. Série 36. Ročníku - 1. užitečné máslo

Jarda se rozhodl upéct koláč, ale zjistil, že se v jeho kuchyňské váze vybila baterka a nemá jak odvážit $300 \mathrm{g}$ mouky. Napadlo ho však, že může použít kostku másla, na které je napsáno, že má hmotnost $m = 250 \mathrm{g}$. Naštěstí našel ještě vhodnou pružinu a stopky. Na velmi lehkou mističku nasypal hromádku mouky, připevnil na pružinu, rozkmital a změřil periodu $T_1=2,8 \mathrm{s}$. To stejné udělal s kostkou másla a naměřil $T_2 = 2,3 \mathrm{s}$. Poraďte Jardovi, kolik mouky má přidat nebo odebrat.

Když Jardu vyhodí z Matfyzu, otevře si pekárnu.

(3 body)6. Série 35. Ročníku - 1. Superman v akci

Lex Luthor zajal Lois Lane a vyhodil ji z letadla ve výšce $h$. Superman se za ní rozletí a v nějaké výšce ji chytí. Předpokládejme, že Lois dokáže přežít zrychlení maximálně $10 g$. V jaké nejnižší výšce ji může Superman chytit, aby ji stihl zachránit?

Martin vzpomínal na mládí.

(5 bodů)6. Série 35. Ročníku - 3. povětrná bublinka

Bublifukem vytvoříme malou mýdlovou bublinku. Jakou rychlostí bude padat k zemi? Bublinka má vnější poloměr $R$ a plošnou hustotu $s$.

Karel dělal bublinky ve vaně.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz