Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

mechanika tuhého tělesa

1. Série 15. Ročníku - 1. špulka

Na špulce je navinutá nit. Za nit táhneme ve vodorovném směru konstantní silou $F$. Vnější poloměr je $R$ a poloměr válce, na kterém je navinuta nit je $r$. Jaké je zrychlení špulky a jaký má směr? Koeficient tření je dost velký na to, aby špulka neprokluzovala. Znáte rozměry, hmotnost a moment setrvačnosti špulky.

Úloha ze soustředění FO podle Lenky a Honzy.

6. Série 14. Ročníku - E. zase domino

Proměřte rychlost padání dominových kostek z problémové úlohy pro různé podmínky. Můžete např. změřit závislost na vzdálenosti, hmotnosti či výšce kostek. Pokud budete řešit i problémovou úlohu, nezapomeňte porovnat vaši teorii s experimentem.

Inspirace problémovou úlohou.

6. Série 14. Ročníku - P. domino

Určitě už jste si někdy hráli s dominem, tedy kvádry postavenými v řadě za sebou, které po shození prvního z nich lavinovitě padají. Pokuste se odhadnout rychlost, kterou se tato vlna šíří, a jak tato rychlost závisí na rozměrech a hmotnosti kvádrů, vzdálenosti kvádrů. Popište podrobně model, který ve svých úvahách použijete, a posuďte, nakolik odpovídá realitě.

Problém, který organizátorům již dlouho vrtal hlavou.

6. Série 14. Ročníku - S. principy mechaniky

* Pomocí principu virtuálních prací nalezněte rovnovážnou polohu systému na obrázku, pokud navíc na konec tyče zavěsíme závaží o hmotnosti $M$.

* Dokažte tvrzení, které jsme při řešení pohybu Huygensova kyvadla použili pro pohyb po cykloidě, totiž, že velikost rychlosti pohybu vyšetřovaného bodu je rovna $2 \frac{\d z}{\d t}$.

Zadali autoři seriálu Honza Houštěk a Lenka Zdeborová.

4. Série 14. Ročníku - 4. zvířátko

Představte si zvířátko, jehož charakteristický rozměr je $L$. Odhadněte, jak na $L$ závisí vzdálenost, kterou je schopné urazit po poušti. A jak závisí na $L$ jeho rychlost běhu po rovině a do kopce? Určete také, jak závisí na velikosti zvířátka výška jeho výskoku.

Nápověda: Uvažte, že $s=vt$. Dále např. uveďme, jak závisí hmotnost zvířátka na $L$: Víme, že $m=\rho V$, kde $\rho$ uvažujme konstantní a $V$ je úměrné $L^{3}$, tedy $m\sim \rho L^{3}\sim L^{3}$, hmotnost zvířátka tedy závisí přímo úměrně na $L^{3}$.

Úlohu vypátral Jan Prokleška.

4. Série 14. Ročníku - P. míček ve vodě

Máme trubku ve tvaru písmene V, jedno rameno je svislé a na konci otevřené, druhé s ním svírá ostrý úhel a je na konci (nahoře) zatavené. Trubka je téměř plná vody a v zataveném rameni nahoře plave míček. Vymyslete způsob, jak dostat míček ven tak, aby voda nevytekla. Nesmíte ji vypustit, svislé rameno musí zůstat pořád svislé a do trubky nesmíte nic strkat.

Úlohu vymyslel Karel Kouřil.

4. Série 14. Ročníku - S. draci

 

  • Vžijte se do role prince, který se chystá useknout drakovi hlavu.

Má dlouhý těžký meč. Jakým místem meče má vést úder, aby ho náraz nepraštil do ruky? Meč můžete považovat za homogenní, nebo navrhnout lepší model.

  • Vymyslete co nejreálnější model, jak draci chrlí oheň. (Slovem nejreálnější nemyslíme návrhy jako „Drak má v žaludku PB–láhev“ a podobné.)

Pokud nevěříte, že draci existují, můžete místo toho vymyslet, jak poznat směr rotace turbíny ve vysavači (aniž byste ho rozebírali).

  • Napište nám své návrhy na obsah dalších dílů seriálu.

Zadali autoři seriálu Lenka Zdeborová a Honza Houšťek.

3. Série 14. Ročníku - 1. rotující koule

Nad vodorovnou podložkou se nachází homogenní koule o poloměru $R$, která rotuje úhlovou rychlostí $\omega_{0}$ kolem vodorovné osy. Jakou rychlostí $v_{0}$ ji musíme vrhnout ve vodorovném směru kolmém na osu rotace, aby se po sérii dopadů na podložku zastavila? Valivý odpor je nulový, nikoliv však smykové tření.

Modifikovaná úloha z 22. MFO na Kubě, zadal Honza Houštek.

2. Série 14. Ročníku - S. kmity

 

  • Určete periodu kmitů soustavy na obr. 3 Tyčka je nehmotná.
  • Mějme dvě stejná závažíčka hmotnosti $m$ spojené vláknem, které prochází dírou ve stolu (viz obr. 4). Závažíčko na stole obíhá bez tření kolem díry ve vzdálenosti $r$ od ní tak, že soustava je v rovnováze. Zjistěte, co se bude

dít, zataháme-li nepatrně za visící závaží.

  • Co má společného kiwi s kyvy?

Zadal autor seriálu Pavel Augustinský.

1. Série 14. Ročníku - 1. levitace

Představme si, že elektrický náboj zeměkoule začne najednou z ničeho nic růst. To znamená, že i vy se začnete nabíjet. Může to dojít tak daleko, že coulombovská síla vyrovná gravitační a vy se odlepíte od Země. Vysvětlete, proč není možné, aby se různě velká tělesa stejné hustoty odlepila ve stejný okamžik. Pro zjednodušení uvažujte, že všechna tělesa mají tvar koule.

Navrhl Miroslav Kladiva na motivy jedné ruské sbírky z FYKOSí knihovničky.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz