Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

mechanika hmotného bodu

3. Série 17. Ročníku - 4. kapitán Kork zasahuje

Vesmírná loď Escapeprise se vrací z prostoročasové bitvy s Odborgy. Během letu ale zjišťují, že nešťastnou náhodou směřují přímo do černé díry FAK-U0. Rozhodnou se pro úhybný manévr a kolmo na směr své rychlosti vypustí v jednom okamžiku všechno palivo. Vypočtěte vzdálenost, ve které Escapeprise kolem černé díry proletí. Jakou největší hmotnost může černá díra mít, nemá-li do ní Escapeprise spadnout? Jako bonus se zamyslete nad tím, zda kapitán Kork mohl úhybný manévr vymyslet chytřeji? Hmotnost samotné lodě je $M$, paliva $m$. Rychlost lodě ve velké vzdálenosti od černé díry je $V$ a směřuje do středu černé díry. Rychlost vypuštěného paliva je $v$ a úhybný manévr proběhl též velmi daleko od černé díry.

Vymyslel Jarda Trnka při sledování svého oblíbeného seriálu.

3. Série 17. Ročníku - P. jede, jede autíčko

Představte si autíčko, jehož motor má konstantní tažnou sílu $F$, pohybující se rychlostí $v$. Jeho výkon tedy je $P=Fv$. Avšak cyklista jedoucí konstantní rychlostí $u$ pozoruje výkon $P=F(v-u)$. Spotřeba benzínu, která odpovídá výkonu, je však stejná z pohledu cyklisty i stojícího chodce. Vysvětlete tento „paradox“. Odpor vzduchu neuvažujte.

Na klasický paradox v mechanice si vzpomněl Honza Prachař

2. Série 17. Ročníku - 3. kulička filuta

Mějme kuličku, která se volně pohybuje po drátové spirále popsané rovnicí $r = Cφ;$ $r$ je vzdálenost od středu a $φ$ je úhel otočení. Počáteční poloha kuličky je $r_{0}$. Spirála rotuje kolem osy procházející jejím středem a kolmé na její rovinu úhlovou rychlostí $ω$ v záporném směru (tj. po směru hodinových ručiček, v opačném směru, než ve kterém roste $φ$). Zjistěte závislost rychlosti kuličky $v$ na $r$.

Jedna řešitelná úloha mezi Jardovými nápady, vybral on sám.

2. Série 17. Ročníku - E. moucha na hladině

Z obdélníkové nádoby vyléváme vodu přes jednu její stěnu. Na hladině plave mrtvá moucha. Proměřte, jak se bude moucha při velmi pomalém vylévání pohybovat. Místo mrtvé mouchy můžete použít jiný odpovídající předmět.

Za dlouhých zimních večerů nad úlohou bádal Honza Houštěk.

1. Série 17. Ročníku - 1. plovající špunt

Máme vědro s vodou a v něm na dně rukou držíme korkový plovák. Takto pustíme vědro ze střechy budovy a zároveň pustíme plovák. Kde se bude plovák nacházet těsně předtím, než vědro narazí na zem? Budova je vysoká $30\, \jd{m}$.

Úlohu zadal Michael Komm.

1. Série 17. Ročníku - 2. zlatá rybka

Představte si dva rybáře sedící naproti sobě na březích řeky široké $30\, \jd{m}$. Zlatá rybka plavající ve vodě spolkne v jednu chvíli návnadu obou z nich. Vzdálenost od rybky k prvnímu rybáři je $17\, \jd{m}$, ke druhému $20\, \jd{m}$. V tu chvíli začnou oba rybáři navíjet, pořád rychleji a rychleji avšak oba zrychlují stejně. A my se ptáme, po jaké křivce (před jejím analytickým vyjádřením preferujeme její název) se rybka dostane na přímku mezi oběma navijáky.

Z přípravy na slovenskou olympiádu zná Miro.

1. Série 17. Ročníku - 3. vrh šikmý vzhůru

Fykosák se (po absolvování letošního soustředění) rozhodne cvičit v hodu granátem. Nemá ale k dispozici rovný terén, tak hází ve svahu. Směrem dolů dokáže dohodit $62\, \jd{m}$, ale proti svahu jen $53\, \jd{m}$ (udělal mnoho pokusů, takže v obou případech nalezl optimální úhel). Určete sklon svahu.

Při nedostatku rovného terénu vymyslel Honza Houštěk.

1. Série 17. Ročníku - 4. závodník

Auto zrychlí z klidu na $100\, \jd{km\cdot h^{-1}}$ za půl minuty, přičemž ujede kilometr. Určete průběh rychlosti tak, aby se minimalizovala maximální velikost absolutní hodnoty zrychlení, kterého auto během pohybu dosáhne.

Lehce přeformulovaný nápad Pavla Habudy.

5. Série 16. Ročníku - 1. prší, prší

V dešťovém mraku je množství malých kapiček vody, jejichž hustotu (tj. celkovou hmotnost kapiček v nějakém objemu lomeno tímto objemem) označme $\rho_{1}$, hustotu vody $\rho_{0}$. Spojením několika kapiček vznikne větší kapka, která začne padat a postupně na sebe nabaluje další a další kapičky. Spočítejte, jak se bude měnit poloměr padající kapky, a s jakým zrychlením se bude pohybovat.

Pro jednoduchost neuvažujte odpor vzduchu působící na kapku a malé kapičky považujte za nehybné.

5. Série 16. Ročníku - 3. elektrický minigolf

Mějme dvě na sebe kolmé nevodivé tyče a na nich nabité kuličky (viz obrázek), které se po nich mohou po tyčích volně pohybovat. Kuličky mají stejnou hmotnost $m$ a náboje $q$ a $-2q$. Na počátku jsou v klidu a jejich vzdálenost od průsečíku tyčí je $d$ a $2d$. Určete, kde se bude nacházet druhá kulička v okamžiku, kdy první dosáhle průsečíku tyčí.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz