Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)
mechanika hmotného bodu
(7 bodů)4. Série 32. Ročníku - 4. trampolína
Dva hmotné body skákaly na trampolíně do výšky $h_0 = 2 \mathrm{m}$. Ve chvíli, kdy oba byly v nejnižším možném místě trajektorie (výchylka $y = 160 \mathrm{cm}$), jeden z nich záhadně zmizel. Do jaké nejvyšší výšky byl druhý vymrštěn? Kruhová trampolína má obvod $o = 10 \mathrm{m}$ a pruží díky $N = 42$ pružinám s tuhostí $k = 1720 \mathrm{N\cdot m^{-1}}$. Trampolínu modelujme $N$ pružinami rozmístěnými rovnoměrně a spojenými ve středu. Hmotnost zmizelého hmotného bodu je $M = 400 \mathrm{kg}$.
Ivo hlídal bratrance.
(10 bodů)4. Série 32. Ročníku - S. lagrangeovská
V závere seriálu ste si určite všimli Lagrangián a diferenciálnu rovnicu, ktoré akoby „spadli z neba“. To nie je vôbec náhoda, veľkou časťou tejto seriálovej úlohy bude tieto dve rovnice odvodiť.
- Ukážte, že ak máme pohyb častice v ľubovoľnom centrálnom poli, teda v poli, kde potenciál závisí len na vzdialenosti, bude sa častica zaručene pohybovať len v rovine.
Návod: Zostavte Lagrangeove rovnice II. druhu pre túto situáciu, použite pri tom vhodné zovšeobecnené súranice. Následne bez ujmy na všeobecnosti položte súradnicu $\theta = \pi /2$ a počiatočnú rýchlosť v smere tejto súradnice nulovú. Zamyslite sa a vysvetlite, prečo je takáto voľba v poriadku a nestratíme pri nej žiadne riešenie.
- Zostavte Lagrangián pre hmotný bod pohybujúci sa v rovine v centrálnom poli. Mali by ste dostať ten istý, ako je uvedený v závere seriálu. Pre tento Lagrangián následne nájdite všetky intergály pohybu a pomocou nich nájdite diferenciálnu rovnicu prvého rádu pre premennú $r$. Pre vašu kontrolu, mala by vám vyjsť rovnako ako na konci seriálu.
- Zamyslite sa, ako určiť uhlovú vzdialenosť medzi dvoma bodmi na sfére, ak máte zadané ich sférické súradnice. Ukážte to napríklad pre hviezdy Betelgeuze a Sírius, ktorých súradnice si nájdite.
Pomôcka: Táto úloha sa dá jednoducho vyriešiť aj bez znalosti sférickej trigonometrie.
(8 bodů)3. Série 32. Ročníku - 5. bodová
Uvažujme hmotný bod umístěný v jednodimenzionálním prostoru. Jeho počáteční pozice i rychlost je nulová. Bod se dokáže pohybovat s libovolným zrychlením z intervalu $\left (- a , a\right )$. Nazvěme $M\left (t\right )$ množinu všech možných stavů $\left (x, v\right )$ takových, že bod se v čase $t$ může nacházet na pozici $x$ a zároveň mít rychlost $v$. Sestrojme graf závislosti $v$ na $x$ v čase $t$. Množina $M\left (t\right )$ v tomto grafu vytvoří plochu $S\left (t\right )$. Analyticky popište křivky ohraničující $S\left (t\right )$.
Bonus: Najděte funkční závislost $S\left (t\right )$.
Jáchym chtěl jistou triviální úlohu řešit jako speciální případ této.
(10 bodů)3. Série 32. Ročníku - S. zobecněná
- Mějme vodorovnou desku, ve které je malá dírka. Přes tuto dírku je provlečený provázek o délce $l$, na jehož spodním konci je zavěšeno závaží o hmotnosti $M$. Toto závaží lze považovat za hmotný bod. Na druhém konci provázku na rovné desce je druhý hmotný bod (kulička) o hmotnosti $m$. Provázek mezi nimi je napnutý díky závaží o hmotnosti $M$. Celou soustavu držíme v klidu tak, že část provázku pod deskou je ve svislém směru. Poté druhému hmotnému bodu, kuličce, udělíme rychlost $v$ ve vodorovném směru kolmém na provázek ve chvíli, kdy soustavu uvolníme. V tomto příkladu neuvažujte žádné tření. Zvolte vhodné souřadnice a sestavte Lagrangeovu funkci pro tuto soustavu.
- Mějme železnou tyč ohnutou do tvaru paraboly tak, že pokud v kartézské soustavě působí tíhové zrychlení v záporném směru osy $y$, pak tyč má stejný tvar jako funkce $y = x^2$. Po tyči se může volně pohybovat hmotný bod o hmotnosti $M$, ke kterému je pevnou nehmotnou tyčkou o délce $l$ připevněno závaží o hmotnosti $m$. Takto jsme vytvořili kyvadlo se závěsem klouzajícím podél ohnuté tyče. Konstrukce dovoluje pohyb celé soustavy pouze v rovině paraboly. Určete vhodné zobecněné souřadnice a najděte Lagrangeovu funkci této soustavy.
- Mějme přímku nakloněnou pod úhlem $\alpha $ vzhledem k vodorovné rovině, po které se pohybuje bez tření hmotný bod o hmotnosti $m$. Najděte vhodné zobecněné souřadnice této soustavy a sestavte Lagrangeovu funkci. Poté sestavte i Lagrangeovy rovnice, dvakrát je zintegrujte, a tak najděte řešení. Zkontrolujte si, zda vaše řešení vychází stejně, jako řešení, které byste získali středoškolskou metodou výpočtu. Při integraci nezapomeňte na integrační konstanty a vysvětlete jejich význam. Jaké budou jejich hodnoty, pokud se bod spustí z klidu z výšky $h$?
(7 bodů)2. Série 32. Ročníku - 4. lunar lander
Jak má řídící elektronika přistávacího modulu Apolla dávkovat tah $T$ motoru (a tedy regulovat spotřebu paliva) směřující směrem dolů, aby se loď snášela na povrch Měsíce rovnoměrným přímočarým pohybem? Efektivní rychlost spalin motoru je $u$. Loď již zbrzdila svůj pohyb po orbitě a sestupuje přímo dolů v homogenním gravitačním poli se zrychlením $g$. Počáteční hmotnost modulu je $m_0$.
Bonus: Jak má elektronika dávkovat tah při přistání z výšky $h$ a počáteční rychlosti $v_0$, aby přístání bylo tzv. pádem z nulové výšky a minimalizovala se spotřeba paliva? Maximální tah motoru je $T\_{max}$.
Michal na webu\footnote {.}{\url {http://www.root.cz/clanky/historie-vyvoje-pocitacovych-her-2-cast-vek-simulaci/}}
(9 bodů)2. Série 32. Ročníku - 5. kladka a pták
Ke stropu je zavěšená pevná kladka a je na ni navlečeno lano tak, aby jeho levý i pravý konec byly ve stejné hloubce. Na jednom konci visí pták Fykosák a na druhém konci závaží, které má stejnou hmotnost jako pták. V počátečním stavu jsou pták i závaží nehybné. Popište, co se bude se soustavou dít, začne-li pták Fykosák lézt vzhůru (po svém vlastním lanu) s použitím konstantní síly. Nejprve předpokládejte, že lano je nehmotné a kladka je ideální. Poté počítejte s délkovou hmotností lana $\lambda $, jeho délkou $l$, momentem setrvačnosti kladky $J$ a jejím poloměrem $r$. Předpokládejte, že lano na kladce neprokluzuje.
Mirek přepsal úlohu od Lewise Carolla do FYKOSího tvaru.
(12 bodů)2. Série 32. Ročníku - E. listopad
Změřte průměrnou vertikální rychlost padajícího listí. Použijte listy z několika různých stromů a diskutujte, jaký vliv má tvar listu na rychlost pádu. Jak by měl vypadat ideální list, pokud bychom chtěli, aby padal co nejpomaleji?
Napadla Jáchyma, když se ptal kamaráda, jestli nezná nějaký zajímavý experiment.
(10 bodů)2. Série 32. Ročníku - S. zväzujúca
- Majme činku tvorenú dvoma hmotnými bodmi s hmotnosťami $m$ a $M$, ktoré sú spojené nehmotnou, ale veľmi pevnou tyčou. Táto činka padá voľným pádom. Napíšte väzbovú podmienku a zároveň aj Lagrangeove rovnice prvého druhu pre tento objekt.
- Majme vodorovnú položku, na ktorej je umiestnený pravouhlý trojboký hranol s hmotnosťou $M$ ako na obrázku . Po strane tohto hranolu, ktorá s podložkou zviera uhol $\alpha $, sa skĺzava hmotný bod s hmotnosťou $m$. V celom príklade neuvažujte trenie.
- Zostavte Lagrangeove rovnice prvého druhu pre túto situáciu.
- Ukážte, že celková hybnosť sústavy v smere osi $x$ je pri nulovej počiatočnej rýchlosti hmotného bodu nulová.
- Postupným riešením sústavy rovníc určte veľkosti rýchlostí hmotného bodu a hranolu v závislosti od času.
- Určte pomer veľkostí týchto rýchlostí.
- Majme kyvadlo zavesené na závese. Zostavte Lagrangeove rovnice prvého druhu pre túto situáciu a ukážte, že pre ňu platí zákon zachovania energie.
(3 body)1. Série 32. Ročníku - 2. ohňostroj
Jáchym odpaloval ohňostroj, který si můžeme představit jako světlici, která je v určitý čas vystřelena rychlostí $v$ směrem svisle nahoru, a poté za nějaký čas vybuchne. Jáchym stál ve vzdálenosti $x$ od místa odpalu, když uslyšel zvuk výstřelu. Za čas $t_1$ uviděl výbuch a za čas $t_2$ po zpozorování výbuchu ho i uslyšel. Spočítejte rychlost $v$.
Jáchym v sobě pyrotechnika nezapře.
(7 bodů)1. Série 32. Ročníku - 4. pád z okna
Když James Bond pustil agenta 006 Aleca Treveljana z konstrukce radioteleskopu Arecibo ve finální scéně filmu Golden Eye, ten začal křičet s frekvencí $f$. Spočítejte závislost frekvence, kterou slyší 007, na čase. Odpor vzduchu neuvažujte.
Nápověda: Pro radu jděte k panu Dopplerovi.
Matěj se rád dívá z ok(n)a.