Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)
ostatní
4. Série 24. Ročníku - E. vejce sebevrah
Z jaké nejvyšší výšky můžete shodit obyčejné slepičí vajíčko na tvrdou podlahu, aniž by se nakřáplo? Co když vajíčko natěsno obalíme nějakým měkkým obalovým materiálem (tj. papír, bublinková folie apod.) s tloušťkou nejvýše 5 mm? Z kolikrát vyšší výšky ho pak můžeme pustit, aniž by se nějak viditelně poškodilo? Vyzkoušejte několik různých obalů.
Karel přemýšlel o padajících vejcích
3. Série 24. Ročníku - 1. rozcvička
- Dr. Nec
Terka byla o víkendu tahat dřevo. Objem dřeva se měří dvěma způsoby: na kubíky (1 m dřevo-hmoty bez vzduchových mezer mezi kládami) a na plnometry (1 m i s mezerami). Nalezněte převodní vztah mezi těmito dvěma jednotkami (tj. kolik plnometrů odpovídá jednomu kubíku) v závislosti na poloměru klád, ze kterých se skládá hranice. Klády považujte za dokonale hladké válce, které se skládají na sebe.
- bublifuk
Foukáme do mýdlového povrchu na počátku kruhového tvaru tak, aby měl tvar kulového vrchlíku o poloměru $r$. Odhadněte, jakou rychlostí do něj musíme foukat?
Jakub
2. Série 24. Ročníku - 1. rozcvička
- Jakubova snídaně
Jakub jí ke snídani cereální kuličky o hustotě $ρ$, které si sype do misky ve tvaru komolého kužele (horní podstava má poloměr $R$, spodní $r$ a výška je $l)$, ve kterém má do výšky $h$ nalité mléko. Kolik nejvíce kuliček může do misky nasypat? Víte, že kuličky v plné velké krabici zabírají přibližně objemový podíl $κ$.
- magnetický monopol
Máme velkou plechovou desku, kterou zmagnetujeme tak, že na její horní ploše bude severní magnetický pól (a na dolní ploše ten jižní). Vylisujeme z ní dvě stejné polokoule. Na vnitřní straně obou polokoulí je teď jižní a na vnější severní pól. Polokoule k sobě přiblížíme tak, že vyrobíme celou kouli. Ta má nyní venku pouze severní pól, takže se chová jako magnetický monopól. A nebo ne? Co nám vytvoření takovéto koule zabrání?
Kuličky ke snídani rozsypal Jakub, magnety zamotaly hlavu brněnským teoretikům
6. Série 23. Ročníku - 2. šmírák Honza
Honza stojí na Žižkovské věži a hledí lidem do oken. Okna jsou všechna namířena k němu, mají stejnou velikost a jsou ve stejné výšce od země. V jak vzdáleném okruhu mají nejméně soukromí? Honza nemá dalekohled.
panorama Prahy studoval Honza Prachař
2. Série 23. Ročníku - 1. kalamita
Jeden z organizátorů jel vlakem domů a zapadl ve vánici. Z dlouhé chvíle počítal sněhové vločky padající za oknem. A napadlo jej – kolik jich je asi v jednom kilogramu sněhu? Provedl kvalifikovaný odhad a spokojeně umrzl. Co mu vyšlo?
vzpomínáme na neznámého padlého
2. Série 23. Ročníku - E. metronom
Hrajete-li na hudební nástroj, určitě občas máte problémy udržet rytmus. Navrhněte experiment a změřte, jakou frekvenci (úderů o stůl, stisků klávesy, …) dokáže člověk nejlépe udržet. Existuje nějaká korelace mezi ní a jinými přirozeně se vyskytujícími jevy?
Parkinsonem onemocněl Honza Hermann
1. Série 23. Ročníku - 1. skrolování v metru
Informační systém v pražském metru má jednu zajímavou vlastnost. Při skrolování textu směrem doleva se písmo nakloní. Jak je možno jednoduchým způsobem „hardwarově“ docílit tohoto efektu a jaký vliv má tato úprava pro text, který skroluje vertikálně? Poznamenejme, že světelný panel se skládá z LED diod rozmístěných v pravoúhlém rastru.
Ze tmy tunelu přitáhl Byrot.
5. Série 22. Ročníku - 4. internetová
Mějme rovné optické vlákno. Světelný signál do něj vstupující může mít odchylku od přímého směru až $α$. Jak nejméně dlouhá musí být časová délka jednoho pulzu, aby šlo určit, zda byl vyslán bit 1, nebo 0, tj. aby aspoň krátký časový úsek byla síla signálu minimální nebo maximální. Délka vlákna je $d$.
na schůzku donesl Honza Jelínek
4. Série 22. Ročníku - 2. na tenkém ledě
Je známo, že led vystavený většímu tlaku snižuje svou teplotu tání. Funguje tento jev při bruslení (tedy, je tlak brusle dostatečný, aby se led rozpustil i při nízkých teplotách)? Pokud ne, co jiného zaručuje hladký skluz?
Při návštěvě kluziště si počítal Dan.
3. Série 22. Ročníku - P. titanový život
Titan – družice Saturnu – je mrazivý svět (povrchová teplota asi $94\, \jd{K}$) s mohutnou dusíkovou atmosférou, ledovým povrchem a uhlovodíkovými jezery. Radar na sondě Cassini obíhající Titan zjistil, že povrchové útvary rotují rychleji než měsíc sám (asi o $0,36^{\circ} \, \jd{{rok}^{-1}}$). Vědecké zdůvodnění zní, že působením větru se mění rotace ledové vrstvy, která plave na podzemním oceánu. O rotaci měsíce se předpokládá, že je synchronizována s oběhem Titanu kolem Saturnu.
Další indicii podzemního oceánu poslala sonda Huygens, která po oddělení od Cassini přistála na povrchu Titanu. Během klesání atmosférou naměřila relativně silné radiové elektromagnetické vlny o frekvenci asi $36\, \jd{Hz}$. K odrazu a zesílení radiových vln může dojít na vodivém prostředí jako je právě rozhraní vody a ledu pod povrchem.
Poraďte expertům NASA, jakými metodami by mohla současná nebo budoucí sonda k Titanu potvrdit nebo vyvrátit existenci podzemního oceánu.
V aktuálním dění zaujalo Honzu P.