Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

hydromechanika

1. Série 12. Ročníku - 3. fontána

figure

Fontána

Na obrázku je nakreslen důmyslný systém nádržek. Spočtěte rychlost vody vystřikující z trubky 3. Viskozitu vody zanedbejte.

6. Série 11. Ročníku - E. akvárium

Najděte si akvárium, nebo podobnou nepropustnou nádobu kvádrového tvaru a zčásti ji naplňte vodou do výšky $h$. Nádobou rychle pohněte ve směru jedné ze stěn, aby hladina začala kmitat tak, jak je to naznačeno na obrázku. Změřte frekvenci, s kterou hladina kmitá, proveďte pokud možno více měření pro různé hodnoty $h$ a $l$ a výsledky se pokuste interpretovat (vymyslete fyzikální model). Omezte se na malé amplitudy kmitů.

4. Série 11. Ročníku - 2. vodní hodiny

Vodní hodiny jsou přesýpací hodiny, ve kterých se místo přesypávání písku přelévá voda. Navrhněte jejich tvar tak, aby hladina vody v horní nádobce klesala konstantní rychlostí. Vzduch je z nádobek vyčerpán.

4. Série 11. Ročníku - P. levitující kapalina

Jistě jste si už někdy všimli, že když vytahujeme skleničku z umyvadla dnem vzhůru, zůstává v ní voda až do té chvíle, kdy její okraj vytáhneme nad hladinu. Pak všechna vyteče. Vysvětlete proč. Uvědomte si, že na povrch kapaliny ve skleničce obrácené dnem vzhůru působí tlak vzduchu, který dokáže vytlačit až deset metrů vodního sloupce!

1. Série 11. Ročníku - 4. grant strýčka Skrblíka

figure

Zlepsovak 1

figure

Strýček Skrblík se jednou doslechl o perpetuech mobile a vytušil příležitost, jak ještě více zbohatnout. Vypsal grant na vymýšlení „věčných strojů“, ale jediní, kdo se přihlásili, byli jeho synovci. Přinesli strýčkovi následující tři nápady:

  • Základem prvního perpetua je válec, který je dutý, vodotěsný a je upevněn v ose na valivých ložiscích. Obrázek nám objasní funkčnost stroje. Na obě části válce sice působí tíhová síla $G$, ale část $B$ je vůči části $A$ válce nadlehčována vztlakovou silou $V$ dle Archimédova zákona. Válec se bude otáčet a jeho rotační energii převedeme na elektrickou energii.
  • Pokud zahřejeme kapalinu, zvětší svůj objem. Zároveň víme, že kapalina je nestlačitelná. Proto budeme kapalinu zahřívat a ochlazovat, změnu jejího objemu převedeme na mechanickou energii a tu na energii elektrickou. Část takto obdržené energie využijeme na zahřívání kapaliny (ochlazení kapaliny zajistí okolní prostředí, odborně „lázeň“). Zbytek energie roztočí stroje ve Skrblíkových továrnách.

* Do nádoby s vodou je zasunuta kapilára. Díky kapilárním jevům voda naplní celou kapiláru a z horního zahnutého konce odkapává dolů, jak je to vidět na obrázku. Dole je umístěna vodní turbína, která je roztáčena padající vodou, a tak může konat práci.

Strýček se nadšeně pustil do výroby těchto strojů, jaké však bylo jeho zklamání, když zjistil, že ani jediný z nich nefunguje. Od té doby už o žádných „perpetech“ nechce ani slyšet.

Na vás teď je, drazí řešitelé, abyste se pokusili vysvětlit, proč žádný z nápadů synovců strýčka Skrblíka nemůže fungovat jako perpetuum mobile.

6. Série 10. Ročníku - P. vodovod

Ke koncům vodorovné trubice délky $l$, hmotnosti $M$ a konstantního průřezu $S$ jsou připevněna kolena, která přivádí vodu seshora a odvádí ji směrem dolů (voda běží svisle, zatočí doleva a běží vodorovně a pak zahne vpravo a běží zase svisle dolů). Druhé koleno je upevněno na otočném kloubu. Jaký průtok musí být v trubici, aby se netočila?

5. Série 10. Ročníku - 4. vodotrysk v lodi, aneb Rychlé šípy nikdo nedoběhne

Rychlé šípy si postavily šlapohyb neboli obojživelný vůz, s nímž podnikly závod přes řeku s Bratrstvem kočičí pracky. Bratrstvo prohrálo a málem se utopilo. „Vy budete mokrý taky, koukněte se na ty mraky!“ procedil Dlouhé Bidlo po nedobrovolné koupeli, načež následující den vyvrtal do dna šlapohybu Rychlých šípů nebozezem díru průřezu $S$. Jak vysokým vodotryskem se na příštích závodech mohly kochat davy příznivců sportu, když Rychlé šípy včetně Rychlonožky usedly do lodi?

4. Série 10. Ročníku - 3. měření tlaku vzduchu v zimě

Fyzikální expedice potřebuje změřit tlak vzduchu ve svém táboře, aby si mohla být jistá, že jí nehrozí vysokohorská nemoc (už i tak jim hrozí umrznutí, protože je přesně $-30^{\circ}\;\textrm{C}$). Shodou okolností mají s sebou rtuťový barometr s hliníkovou stupnicí a naměřili tlak vzduchu $750\;\textrm{torr}$. Jaký byl ve skutečnosti tlak vzduchu, jestliže jsou barometr i měřidlo cejchovány pro teplotu $0^{\circ}\;\textrm{C}$?

4. Série 10. Ročníku - E. hustota vody

Tentokrát je vaším experimentálním úkolem změřit další fyzikální vlastnost vody, totiž její hustotu. Aby nevznikaly velké zmatky, vymysleli jsme pro vás tento postup měření: Do vody ponoříme nádobu dnem vzhůru, původně celou naplněnou vzduchem. Jak se nádoba ponořuje, tak se do nádoby postupně dostává voda. Vymyslete, jak tímto postupem zjistíte hustotu vody a pokuste se navrhnout takové experimentální uspořádání, abyste dosáhli maximální přesnosti. Znáte atmosférický tlak a tíhové zrychlení.

3. Série 10. Ročníku - 1. skokan

Člověk padá z můstku do bazénu, přičemž v bazénu je voda a můstek je ve výšce $h$ nad hladinou. Náš skokan má hmotnost $M=80\;\mathrm{kg}$, hustotu $ρ=0,9\; \textrm{g}\cdot \mathrm{cm}^{-3}$, je vysoký $L=1,7\;\mathrm{m}$ a na počátku skoku (volného pádu) byl v klidu. Do jaké největší hloubky $H$ se skokan ponoří? Jaký bude jeho další pohyb? Odpor vodního prostření:

  • zanedbejte
  • nezanedbejte
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz