Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)
mechanika hmotného bodu
(6 bodů)3. Série 28. Ročníku - S. numerická
- Podívejte se na rovnice Lorenzova modelu a sepište skript na jeho simulaci v Octave (na to si případně osvěžte i druhý díl seriálu). Spolu s vykreslujícím příkazem by váš skript měl vypadat zhruba takto: …
function xidot = f(t,xi)
…
xdot=…;
ydot=…;
zdot= …;
xidot = [xdot;ydot;zdot];
endfunction
nastaveni = odeset('InitialStep', 0.01,'MaxStep',0.1);
pocPodminka=[0.2,0.3,0.4];
reseni=ode45(@f,[0,300],pocPodminka,nastaveni);
plot3(reseni.y(:,1),reseni.y(:,2),reseni.y(:,3)); </pre> Jen místo tří teček doplňte zbytek programu podobně jako v druhém dílu seriálu a použijte $σ=9,5$, $b=8⁄3$. Pak zjistěte alespoň s přesností na jednotky, pro jaké kladné $r$ přechází systém z asymptotického zastavování se na chaotickou oscilaci (na počátečních podmínkách nezáleží).
- Zde je plný text octavovského skriptu pro simulaci a vizualizaci pohybu částice v gravitačním poli hmotného tělesa v rovině $xy$, kde všechny parametry a konstanty jsou rovny jedné: clear all
pkg load odepkg
function xidot = f(t,xi)
alfa=0.1;
vx=xi(3);
vy=xi(4);
r=sqrt(xi(1)^2+xi(2)^2);
ax=-xi(1)/r^3;
ay=-xi(2)/r^3;
xidot = [vx;vy;ax;ay];
endfunction
nastaveni = odeset('InitialStep', 0.01,'MaxStep',0.1);
x0=0;
y0=1;
vx0=…;
vy0=0;
pocPodminka=[x0,y0,vx0,vy0];
reseni=ode45(@f,[0,100],pocPodminka,nastaveni)
plot(reseni.y(:,1),reseni.y(:,2));
pause()</pre>
- Zvolte počáteční podmínky $x0=0,y0=1,vy0=0$ a počáteční rychlost ve směru $x$ nenulovou tak, aby byla částice vázaná, tj. neulétla z dosahu centra.
- Přidejte ke gravitační síle ve skriptu sílu $-α\textbf{r}⁄r^{4}$, kde $αje$ malé kladné číslo. Volte postupně několik zvětšujících se $α$ počínaje $α=10^{-3}$ a ukažte, že způsobují kvaziperiodický pohyb.
(5 bodů)2. Série 28. Ročníku - 5. gravitační manévry
Máme družici, která obíhá Slunce po eliptické dráze. Pokud zmenšíme rychlost v afelu $v_{a}$ na 4⁄5 původní rychlosti (tj. na 4⁄5$v_{a})$, jak se změní rychlost družice v periheliu? Vyjádřete novou rychlost za pomoci původní rychlosti $v_{p}$ a parametrů elipsy (hlavní poloosa $a$ a relativní excentricita $ε)$.
Karel byl na přednášce o gravitačním praku.
(6 bodů)2. Série 28. Ročníku - S. numerická
- Délkové veličiny zadáváme v metrech, časové v sekundách a hmotnostní v kilogramech. Úhlovou rychlost $Ω$ zadáváme v radiánech za čas. Když vezmete ze seriálu rovnice pro pohyb míče, nachází se v nich ale ještě tři parametry: $α$, $β$, $γ$. Jaké jsou jejich rozměry?
- Uvažujte volný pád míče s $Ω=0$ a $v_{x}=0$. Existuje pak konečná rychlost $v_{z}^{t}$, při které se vyrovná třecí síla a tíhové zrychlení a pád míče už nezrychluje.
- Určete tuto rychlost pomocí parametrů z rovnic pohybu pro míč.
- Obraťte tuto rovnost tak, aby vyjadřovala $β$. $v_{z}^{t}$ se dá dobře měřit a pro fotbalový míč o hmotnosti $m=0,5\;\mathrm{kg}$ je typicky okolo $25\, m\cdot s^{ -1}$. Kolik je pak $β$?
- Vyjádřete si počáteční $v_{x}$ a $v_{z}$ pomocí úhlu výstřelu $φ$ při fixní počáteční rychlosti $v=10\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Sepište program podle seriálu a vyzkoušejte měnit počáteční podmínky a parametry následovně
- Zvolte nějaké kladné $β$, vypněte rotaci $Ω=0$ a zjistěte, zda je úhel výstřelu, pod kterým doletí míč nejdál, menší nebo větší než 45°. Svoje zjištění demonstrujte pomocí grafů letu.
- Zvolte nenulové kladné $α$ s numerickou hodnotou v daných jednotkách stejnou jako $β$, $γ=0,01$ (v daných jednotkách) a $Ω=±5rad\cdot \;\mathrm{s}^{-1}$. Jak se v daných případech změní optimální úhel výstřelu?
Bonus: Jak byste tedy nejdále dohodili krikeťákem? Je náš model pro tuto úvahu dostatečný?
(3 body)1. Série 28. Ročníku - 3. zrychlujeme
Vysvětlete, proč a jak se odehrají následující situace:
- V cisterně tvaru kvádru s vodou plove na hladině míček. Popište pohyb míčku, začne-li se cisterna rozjíždět s konstantním zrychlením dostatečně malým, aby voda nepřetekla přes okraj.
- V cisterně tvaru kvádru naplněné vodou se vznáší balonek naplněný vodou. Popište pohyb balonku, začne-li se cisterna rozjíždět s konstantním zrychlením dostatečně malým, aby voda nepřetekla přes okraj.
- V uzavřeném autobusu se vznáší u stropu balonek. Popište jeho pohyb, začne-li se autobus rozjíždět s konstantním zrychlením.
Dominika a Pikoš na zkoušce z fyziky.
(5 bodů)1. Série 28. Ročníku - 5. tisícročná včela
Spočítejte, jaký výkon potřebuje včela, aby se udržela ve vzduchu, a odhadněte, jak dlouho se vydrží najedená včela vznášet v konstantní výšce.
Michalovi vyplynulo z diskuze o kvadrokoptérách.
(6 bodů)1. Série 28. Ročníku - S. nejistá
- Sepište si rovnice pro vrh v homogenním gravitačním poli (nemusíte je znovu řešit, ale musíte je umět správně použít). Navrhněte přístroj, který bude vrhat předmět dle vašeho uvážení a určete pod jakým úhlem a jakou rychlostí tak činí. Můžete například vrhat pomocí pružiny, změřit její tuhost, hmotnost předmětu a vypočítat kinetickou energii a tudíž i rychlost předmětu. V jakých rozmezích jste si s rychlostí a úhlem jistí? Dosaďte tyto rozsahy do rovnic a ukažte v jakých rozmezích v důsledku toho můžete očekávat vzdálenost dopadu od vašeho předmětu. Vrhněte svůj předmět daný přístrojem alespoň pětkrát a změřte vzdálenost dopadu – v jakých rozmezích jste si jisti danou vzdáleností? Ukažte, zda se vešly vaše výsledky do toho, co jste předpověděli. (Za odkaz na video s vrhem bonusový bod!)
- Uvažte kyvadlo s výchylkou $x$, které se efektivně kývá harmonicky, ale frekvence jeho kyvů závisí na maximální výchylce $x_{0}$
$$x(t) = x_0 \cos\left[\omega(x_0) t\right]\,, \quad \omega(x_0) = 2\pi \left(1 - \frac{x_0^2}{l_0^2}\right)\,,$$
kde $l_{0}je$ nějaká délková škála. Myslíme si, že pouštíme kyvadlo z $x_{0}=l_{0}⁄2$, ale ve skutečnosti jej vypouštíme z $x_{0}=l_{0}(1+ε)⁄2$. O kolik se liší argument kosinu od 2π po jedné námi předpokládané periodě? Po kolika periodách bude kyvadlo vychýlené na druhou stranu, než bychom předpokládali? Tip Argument kosinu se bude v tu chvíli od předpokládaného lišit o víc než π ⁄ 2.
- Vezměte do ruky propisku a postavte jí na stůl na špičku. Proč spadne? A co rozhoduje o tom, že spadne spíš doprava, než doleva? Proč nedokážete předpovědět výsledek hodu kostkou, i když zákony fyziky by jej měly plně předurčit? Když hrajete kulečník, je neschopnost dokončit hru pouze v jednom šťouchu pouze v tom, že to nedokážete propočítat? Sepište svoje odpovědi a zkuste vyjmenovat fyzikální jevy ze života, které jsou v principu předpověditelné, ale ani dobrá znalost situace vám v předpovědi moc nepomůže.
(2 body)6. Série 27. Ročníku - 2. go west
Již před více než sto lety měření geodetů potvrdila, že když plujeme lodí směrem na západ, ukazují gravimetry větší hodnoty tíhového zrychlení než při cestě na východ. Určete, jaký rozdíl naměříme na rovníku, jestliže nejprve provedeme měření v klidu a poté za konstantní rychlosti 20 uzlů v západním směru.
Mirek se divil, proč lidé neemigrují raději na východ.
(4 body)6. Série 27. Ročníku - 5. toaleťák
Roli s papírem uchytíme do ložiska (bez tření) a necháme odmotávat konec papíru (zanedbáme lepení vrstev na sebe, tření v ložisku a hmotnost ložiska). Jakou úhlovou rychlostí se bude otáčet rulička potom, co se odmotá všechen papír? Známe poloměr a hmotnost ruličky, délkovou hustotu papíru, jeho celkovou hmotnost a délku. Uvažujte, že se papír bude odmotávat do nekonečné hloubky.
Bonus: Uvažujte, že papír dopadne na zem dříve, než se celý odmotá.
Napadla Lukáše při čtení Michalovy záchodové úlohy.
(8 bodů)5. Série 27. Ročníku - E. gumipuk
Závaží o hmotnosti $m$ na gumičce délky $l_{0}$ je zavěšeno v pevném bodě o souřadnicích $x=0$ a $y=0$. Z osy $x$, která je horizontálně, závaží pouštíme. Jaká bude závislost nejnižšího dosaženého bodu na poloze na ose $x?$
Dominika zkoušela, jak co nejlépe někomu vypíchnout oko.
(4 body)4. Série 27. Ročníku - 3. racek
Naproti sobě plují dvě lodě, první rychlostí $u_{1}=4\;\mathrm{m}\cdot \mathrm{s}^{-1}$ a druhá rychlostí $u_{2}=6\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Ve chvíli, kdy jsou od sebe vzdáleny $s_{0}=50\;\mathrm{km}$, vzlétne z první lodi racek a letí směrem ke druhé. Letí proti větru, jeho rychlost je $v_{1}=20\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Když dorazí k druhé lodi, obrátí se a letí zpět, nyní po větru rychlostí $v_{2}=30\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Takto létá tak dlouho, dokud se obě lodi nesetkají. Jakou celkovou dráhu racek urazí?
Mirek vylepšoval úlohy pro ZŠ.