Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

ostatní

1. Série 14. Ročníku - E. natahování špaget

Určete Youngův modul pružnosti v tahu uvařených špaget.

Bláznivý nápad Honzy Houšťka.

6. Série 13. Ročníku - 3. kolik máme kyslíku?

Zkuste spočítat (či spíše kvalifikovaně odhadnout), na jak dlouho by lidstvu stačil kyslík nacházející se v současné atmosféře, kdyby najednou přestala fungovat fotosyntéza a rostliny by jej tedy nedoplňovaly. Potřebné údaje se pokuste zjistit v literatuře, nebo je vhodně aproximujte.

6. Série 13. Ročníku - E. povrchové napětí vody

Změřte závislost povrchového napětí vody na teplotě. Metodu měření si můžete vybrat sami.

6. Série 13. Ročníku - P. věříte fyzice?

Zkuste se zamyslet a napsat úvahu na téma: O platnosti kterých fyzikálních zákonů, pouček a teorií jsem přesvědčen z vlastní zkušenosti a každému bych byl schopen jejich platnost dokázat, a kterým prostě věřím například proto, že mi o nich říkali ve škole.

6. Série 13. Ročníku - S. nelinearita třetího řádu

Nelinearita třetího řádu ve formě změny indexu lomu optickým polem má význam pokud je součin intenzity světla $I_{min}$ a nelineárního koeficientu $n_{2}$ řádově větší než $0,005$. Určete, jak by musel být velký výstupní výkon kontinuálně pracujícího laseru k překročení uvedené meze pro $n_{2}=5\cdot 10^{-14}\;\mathrm{cm}^{2}/\,\jd{GW}$ při fokusaci svazku na průměr $50 \,\jd{µm}$. Srovnejte vypočtený výkon s výkonem žárovek, zářivek, Slunce, Měsíce a dalších podobných klasických zdrojů záření.

5. Série 13. Ročníku - P. zamrzání rybníku

Odhadněte, za jak dlouho naroste led na rybníce z deseti centimetrů na dvacet. Teplota vzduchu je stále pět stupňů pod bodem mrazu. Potřebné konstanty naleznete v tabulkách.

4. Série 13. Ročníku - E. dráteček

Někde v této brožurce najdete připevněn kousek drátečku (pokud jej tam nemáte a rozhodli jste se tuto úlohu měřit, tak nás prosím kontaktujte). Vaším úkolem je zjistit, z jakého kovu je vyroben. Vzorek nesmíte nijak poničit (roztavit, naleptat kyselinou, trvale zdeformovat atd.). Můžete změřit například tepelnou kapacitu, hustotu, tepelnou vodivost a roztažnost, délku, měrný odpor, průměr a hmotnost atomového jádra, elektrochemický potenciál, odrazivost, mřížkovou konstantu, relativní či absolutní permitivitu a permeabilitu, kapacitu, indukčnost, poločas rozpadu, absorpční a emisní spektrum… Fantazii se meze nekladou.

4. Série 13. Ročníku - P. jablko nepadá daleko od baobabu

Představme si baobab, který roste na rovníku, na jeho nejvyšší větvi ve výšce $h$ je baobabí jablko. Jablko se rozhodne, že spadne. Spočtěte, jak daleko od kmene dopadne.

Řešení jedna: Dívá-li se na situaci pozorovatel z inerciální soustavy nespojené s povrchem Země, vidí, že ve výšce $h$ letí jablko rychlostí $ω(R_{z}+h)$ ve směru rovnoběžně s povrchem ($ω$ je úhlová rychlost rotace Země). Povrch se pohybuje v témže směru rychlostí $ωR_{z}$. Rozdíl je tedy $ωh$. Jablko letí dobu $t=(2h⁄g)^{1⁄2}$ a dopadne tedy ve vzdálenosti $s=ωh(2h⁄g)^{1⁄2}$ od kmene.

Řešení dva: Díváme-li se na situaci ze soustavy spojené s povrchem Země, zdají se nám nehybné předměty, které ve výšce $x$ letí rychlostí $ω(R_{z}+x)$. Jablko letí stále $ω(R_{z}+h)$ a tedy vzhledem k pozorovateli na Zemi rychlostí $ω(h-x)$. Pro $x$ platí $x=h-gt^{2}⁄2$ a tedy $v=ωgt^{2}⁄2$. Po zintegrování (kdo neví, co to je, nechť přijme, že plocha pod grafem funkce $y=x^{2}$ je $x^{3}⁄3)$ vyjde $s=(ωh⁄3)(2h⁄g)^{1⁄2}$.

Na vás je, abyste rozhodli, který z výsledků je správně, a opravili chybný postup.

3. Série 13. Ročníku - E. hustota

Sežeňte si stopky, dostatečné množství lihu (denaturovaného) a neokalibrovaný hustoměr (či dřevěnou tyčku zatíženou závažíčkem), u kterého si můžete zjistit rozměry a hmotnost. Navrhněte vhodnou metodu, ve které použijete zmíněné pomůcky, a změřte hustotu lihu.

2. Série 13. Ročníku - E. sloupec cukru

Jistě víte, že když ponořujete kostkový cukr do čaje, voda do kostky vzlíná. Je na vás, abyste vymysleli vhodnou aparaturu a proměřili do jaké výšky kapalina vystoupí, máte-li hodně vysoký sloupec kostek cukru (pokud budete mít chuť, tak třeba i závislost výšky na čase). Navrhněte nějaký fyzikální model. Ve vodě se ale cukr rozpouští, takže se záhy rozpadne. Použijte tedy raději benzín, líh či jinou kapalinu, ve které se cukr nerozpouští.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz