Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

mechanika hmotného bodu

(6 bodů)4. Série 37. Ročníku - 3. krok sem krok tam

figure

Uvažujme homogenní magnetické pole o indukci $B_1$. To se rozprostírá v poloprostoru, který je ohraničen rovinou rozhraní $y=0$, za kterou je stejně orientované, taktéž homogenní magnetické pole o indukci $B_2$. Z roviny rozhraní, kolmo k němu a k siločárám polí, vyletí elektron rychlostí $v$ (jako na obrázku). Určete velikost i směr jeho průměrné rychlosti rovnoběžné s rovinou rozhraní.

Bonus: Uvažujte nyní, že se velikost pole mění lineárně jako $B = B_0 \(1+\alpha y\)$ a jeho směr je v kladném směru osy $z$. I v tomto případě určete velikost i směr průměrné rychlosti elektronu rovnoběžné s rovinou rozhraní. Elektron na začátku vypouštíme stejně jako v předchozím případě.

Jarda jde vpřed o krok, ale o dva zpátky.

(5 bodů)3. Série 37. Ročníku - 3. náhodně dál dojdeš

V mikrosvětě buněk rozlišujeme dva typy transportu: transport pomocí volné difuze, tj. Brownova pohybu, kde pohyb využívá přímo energie prostředí, a tzv. aktivní transport, který vyžaduje například proteinový motor pohybující se konstantní rychlostí po cytoskeletálním vlákně. Uvažujme typickou hodnotu difuzní konstanty $D \approx 10^{-9}  \mathrm{cm^2.s^{-1}}$ a rychlost aktivního transportu $u\approx 10^{-6}  \mathrm{m.s^{-1}}$. Pro jaké vzdálenosti se časově vyplatí difuzní a kdy naopak aktivní způsob pohybu? Uvažujte, že transport probíhá jen v jednom rozměru.

Marek J. četl Sekimota.

(10 bodů)3. Série 37. Ročníku - S. vážení riešitelia

  1. Preveďte z definícií príslušných základných jednotiek do jednotiek SI
    • tlak $1 \mathrm{psi}$,
    • energiu $1 \mathrm{foot-pound}$,
    • silu $1 \mathrm{dyn}$.
  2. V difrakčnom experimnente bola nameraná mriežková konštanta (dĺžka hrany elementárnej bunky) kuchynskej soli ako $563 \mathrm{pm}$. Známa je tiež jej hustota $2,16 \mathrm{g\cdot cm^{-3}}$, a že kryštalizuje v kubickej, plošne centrovanej sústave. Určite hodnotu atómovej hmotnostnej jednotky.
  3. Tenká tyč dlhá $l$ s dĺžkovou hmotnosťou $\lambda $ leží na valci s polomerom $R$ kolmo na jeho os symetrie. Na každom konci tyče je umiestnené závažie s hmotnosťou $m$ tak, že tyč je vo vodorovnej polohe. Hmotnosť jedného závažia opatrne zvýšime na $M$. Aký uhol voči vodorovnému smeru tyč zaujme? Predpokladajte, že tyč z valca neskĺzne.
  4. Ako by ste zmerali hmotnosť:
    • astronauta na Medzinárodnej vesmírnej stanici,
    • naloženého ropného tankeru,
    • malého asteroidu mieriaceho k Zemi?

Dodo si stále pletie váhu a hmotnosť.

(3 body)2. Série 37. Ročníku - 1. posilujeme

figure

Nákres kladkostroje

Při posilování se často potkáme se stroji, které obsahují kladky. Uvažujme stroj na následujícím obrázku. Jakou silou musíme na lano působit, jestliže velikost rychlosti konce lana v bodě A je $v = 0{,}4 \mathrm{m\cdot s^{-1}}$ a směřuje dolů? Každá kladka má poloměr $r = 15 \mathrm{cm}$ a hmotnost $m = 15 \mathrm{kg}$. Přes volnou kladku visí závaží o hmotnosti $M = 25 \mathrm{kg}$.

Dodo byl na Smíchoffce.

(3 body)1. Série 37. Ročníku - 2. řazení vlaku

Jarda stojí na konci nástupiště a čeká na příjezd svého vlaku. Když kolem něj projíždí první vagón vlaku, zjistí, že právě v tomto voze má svoji místenku. V tomto okamžiku je rychlost vlaku $8{,}5 \mathrm{m\cdot s^{-1}}$ a vlak začne rovnoměrně zpomalovat, až zastaví za čas $28 \mathrm{s}$. Jarda se ihned rozešel ke dveřím svého vagónu, protože se ale musí prodírat davy cestujících, je jeho rychlost jen $1 \mathrm{m\cdot s^{-1}}$. Jak nejméně dlouho musí vlak ve stanici stát, aby Jarda stihnul nastoupit do svého vagónu?

Jarda už zase jede do Prahy.

(12 bodů)1. Série 37. Ročníku - E. utřeme papír

Změřte koeficient statického tření mezi dvěma listy kancelářského papíru.

Karel četl recepty napříč.

(3 body)6. Série 36. Ročníku - 2. shnilé jablko

Jarda našel po FYKOSím soustředění ve svém batohu jablko, které už nebylo v dobrém stavu. Hodil ho do nízkého koše na kuchyňský odpad vzdáleného $1{,}0 \mathrm{m}$ a samozřejmě se trefil. Jablko házel vodorovně z výšky $0{,}5 \mathrm{m}$, dopadlo na rozmezí stěny a dna koše, kde se rozpláclo. Koš o hmotnosti $910 \mathrm{g}$ se po dopadu jablka posunul o vzdálenost $5 \mathrm{cm}$. Jaký je koeficient tření mezi podlahou a košem? Jablko má hmotnost $230 \mathrm{g}$.

Jarda zase zapomněl sníst svačinu.

(3 body)5. Série 36. Ročníku - 2. dopravní pás

Na pohybující se vodorovný dopravní pás každou sekundu svisle dopadá materiál o hmotnosti $\mu $, který na jeho konci padá pryč. Na pás působí odporová síla $F\_{odp}=kv$, která je přímo úměrná rychlosti pásu $v$ přes konstantu $k$. Jak velkou rychlostí se bude pás pohybovat, pokud

  • na něj působí konstantní pohonná síla $F$?
  • je poháněn motorem s konstantním výkonem $P$?

Karel doufal, že to půjde vyřešit.

(6 bodů)5. Série 36. Ročníku - 3. čekáme na výtah

Karel jezdí výtahem v budově, která má přízemí a nad ním dalších $12$ pater, přičemž výška jednoho patra je $h=3{,}0 \mathrm{m}$. Uvažujte, že výtah během své jízdy polovinu doby zrychluje a druhou polovinu doby zpomaluje konstantním zrychlením $a=1{,}0 \mathrm{m\cdot s^{-2}}$. S $50 \mathrm{\%}$ pravděpodobností výtah stojí v přízemí a zbytek pravděpodobnosti je rovnoměrně rozdělený mezi ostatní patra. Jaká je očekávaná doba čekání na výtah v jednotlivých patrech budovy? Zanedbejte čas otevírání dveří.

Bonus: Mějme $2$ výtahy opět v dvanáctipatrové budově. Jeden výtah bude odvolávaný do přízemí. Do jakého patra bychom měli posílat druhý, abychom minimalizovali průměrnou dobu čekání? Předpokládejte analogicky, že polovina jízd bude začínat v přízemí a druhá polovina s rovnoměrnou pravděpodobností v libovolném z dalších pater.

Karel čekává často na výtah.

(8 bodů)5. Série 36. Ročníku - 5. xenon šel na vandr

Jednou kladně ionizovaný atom xenonu vyletěl rychlostí $v=7 \mathrm{m\cdot s^{-1}}$ ze středu velké válcové cívky a začal se pohybovat homogenním magnetickým polem v rovině kolmé na magnetické siločáry. V tu chvíli cívku odpojíme od zdroje, takže její indukce začne exponenciálně klesat podle vztahu $\f {B}{t}=B_0\eu ^{-\Omega t}$, kde $B_0=1,1 \cdot 10^{-4} \mathrm{T}$ a $\Omega =600 \mathrm{s^{-1}}$. S jakou odchylkou od původního směru se atom bude pohybovat po ustálení? Nápověda:: V úloze se nebojte použít vhodnou aproximaci, nebo ji zkuste řešit numericky.

Vojta vymýšlel zadání s rozumným řešením několik hodin, ale stejně je to hnus. A to ještě neviděl řešení.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz