Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)
mechanika tuhého tělesa
4. Série 9. Ročníku - 3. stvoření hvězd
Podle jedné z teorií vznikají hvězdy z oblaku mezihvězdné látky (kosmického prachu) smršťováním pod vlivem gravitačních sil. Určete dobu, za jakou se může zformovat hvězda z obrovského kulového oblaku kosmického prachu o hustotě $ρ=2\cdot 10^{–17}\;\textrm{kg}\cdot \textrm{m}^{–3}$. Můžete předpokládat, že se během smršťování částečky hmoty nepředbíhají a na začátku smršťování měly nulové rychlosti (oblak nijak nerotoval, nebyly v něm víry apod.). Zanedbejte také rozměry vzniknuvší hvězdy vůči počáteční velikosti oblaku.
2. Série 9. Ročníku - 3. válcovací stolice
Dva stejné válce o poloměru $R$, jejichž osy jsou rovnoběžné a leží ve vodorovné rovině ve vzdálenosti $a$, rotují opačnými směry. Na tyto válce položíme vodorovně desku délky $2a$ o hmotnosti $m$ tak, že přečnívá vpravo více než vlevo (viz obr. 2). Mezi deskou a válcem působí tření s koeficientem $μ$. Co se bude dít s deskou,
- pokud jsou obvodové rychlosti stejně veliké,
- pokud je obvodová rychlost levého válce dvakrát větší než obvodová rychlost pravého?
5. Série 8. Ročníku - 3. Ondrova stavebnice
Malý Ondra je na svůj věk velice zvídavý chlapec a místo hraní si s autíčky studuje takřka fyzikálně svět. Ve své stavebnici nalezl dřevěnou kouli a válec o stejném průměru i ze stejného materiálu a jal se dělat pokusy. Vhrnul kouli a válec (bez roztočení, viz obrázek) rychlostí $v_{0}$ po podlaze a sledoval, na jaké rychlosti $v$ se pohyb těles ustálí. Byl velice překvapen, když zjistil, že jedno z těles je rychlejší než druhé. Rozeberte teoreticky jeho „experimentální“ zjištění a určete konečné rychlosti těles. Uvažujte pouze smykové tření s koef. $μ$, valivé tření zanedbejte.
5. Série 8. Ročníku - P. co ten skokan pořád chce
Chceme-li demonstrovat metodu řešení soustavy rovnic na našem skokanovi, budeme muset přidat další podmínku: dejme tomu, že první dopad na prkno se mu zdál příliš tvrdý; rozhodl se tedy rozkývat prkno natolik (změnit amplitudu kmitů), aby druhá srážka s prknem proběhla se zanedbatelnou vzájemnou rychlostí. Tedy jak hodnota Funkce, tak Derivace (uvedená v minulém díle) byla v okamžik srážky rovna nule. Vašim úkolem je najít potřebnou amplitudu $A_{n}$ a dobu druhého skoku $T_{n}$ (odráží se opět dole).
4. Série 8. Ročníku - 4. válec kontra zeď
Dřevěný válec o poloměru $R$ a hmotnosti $m$ se valil po podlaze rychlostí $v$ do okamžiku, kdy se zarazil o zeď. O jaký úhel se ještě válec pootočí, než se úplně zastaví? Koeficient tření mezi válcem a stěnou resp. podlahou je $μ$.
3. Série 8. Ročníku - E. grant strýčka Skrblíka
Vašim milovaným strýčkem vám byl zadán úkol zjistit, zda jeho památeční rodinná lžička jest skutečně z ryzího hliníku. Vaše experimentální vybavení je však poněkud skromné: kromě uvedené lžíce dostanete k dispozici závaží o známé hmotnosti, dlouhé pravítko, provázek a dva hřebíky, které můžete zatlouct do zárubně dveří. Navíc zde ještě stojí kbelík plný vody. Navrhněte, výpočty podložte a hlavně proveďte měření, při kterém co nejpřesněji s pomocí jmenovaných pomůcek určíte hustotu materiálu lžičky. Uskutečněte dostatečné množství měření a na základě alespoň nějakých kalkulací také odhadněte věrohodnost vámi obdrženého výsledku.
Nápověda: Pokuste se srovnat hmotnost lžíce a závaží zavěšováním na provázek, který jste (s mírným průvisem) natáhli mezi zárubní dveří.
2. Série 8. Ročníku - P. problém liftboye
Liftboy v mrakodrapu si pověsil na stěnu svého výtahu přesné kyvadlové hodiny, aby viděl, kdy mu končí pracovní doba. Doba pohybu výtahu se zrychlením vzhůru a dolů je stejná. Zrychlení taktéž. Co si myslíte: bude mít chlapec pracovní dobu delší, kratší nebo stejnou?
6. Série 7. Ročníku - 3. bycikl
Bicykl je neobvyklý tím, že jeho přední kolo je menší než zadní. Diskutujte, zda závisí výkon, který můžeme získat z alternátoru, na umístění na předním či zadním kole, případně na konkrétní poloze.
6. Série 7. Ročníku - 4. kámen
O kámen, vystupující do výšky $h$ nad hladinu vody, se jedním koncem opírá tenká deska délky $l$, která je částečně ponořena do vody. (viz obr. 3) Při jakém minimálním koeficientu tření mezi deskou a kamenem bude deska v rovnováze? Hustota dřeva je $ρ$, hustota vody $ρ_{0}$.
5. Série 7. Ročníku - 1. závod láhví
Položíte-li na nakloněnou rovinu dvě láhve, jednu prázdnou a jednu plnou, která z nich se bude kutálet rychleji (jsou to téměř válcové nádoby, osa symetrie kolmo na spádnici)? Pohyb na nakloněné rovině uvažujte bez tření a podkluzování. Přechází-li rovina v hrubší vodorovnou plochu, která z nádob po ní dojede dál? A uvedeme-li je na úpatí nakloněné roviny prudce do pohybu směrem vzhůru, která vyjede výše?