Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

molekulová fyzika

(8 bodů)2. Série 29. Ročníku - E. je mi to šumák

Kupte si v lékárně šumivý celaskon nebo cokoliv, co se podává v tabletách určených k rozpuštění ve vodě. Změřte, jak dlouho trvá rozpuštění jedné tablety v závislosti na teplotě vody, do které ji hodíte. Diskutujte příčiny a vymyslete, proč je pozorovaná závislost taková.

Aleš Podolník umíral na rýmu.

(6 bodů)2. Série 29. Ročníku - S. procesní

 

  • Které ze skupiny procesů (izobarický, izochorický, izotermický a adiabatický) můžou být vratné?
  • Vezměte vztah $T=pV / (nR) $ s $n=1\;\textrm{mol}$, $p=100\;\textrm{kPa}$ a $V=22\;\textrm{l}$. O kolik se změní $T$, když $p$ i $V$ zvětšíme o $10\;\%$, $1\;\%$ a $0,\! 1\; \%$? Spočítejte to dvěma způsoby: přesně a pomocí vztahu $\mathrm{d}T=T_{,p}\mathrm{d}p + T_{,V} \mathrm{d}V$. Jak se tyto výsledky liší?
  • d gymnastika:
    • Ukažte, že $\mathrm{d} \left[ C f(x) \right] = C \mathrm{d} [f(x)]$, kde $C$ je konstanta.
    • Vypočítejte $\mathrm{d} (x^2)$ a $\mathrm{d} (x^3)$
    • Ukažte, že $\mathrm{d} \left( 1/x \right)= - dx/x^2$ z definice, tedy $\mathrm{d} \left(\frac{1}{x}\right)= \frac{1}{x+ \mathrm{d} x} - \frac{1}{x}$. Může se vám hodit: $(x + \mathrm{d} x)(x-\mathrm{d} x) = x^2 - (\mathrm{d} x)^2 = x^2$.
    • Bonus: Platí $\sin{(\mathrm{d} \vartheta)} = \mathrm{d} \vartheta$ a $\cos{\mathrm{d} \vartheta} = 1 $. Také máte součtový vzorec $\sin{(\alpha + \beta)}= \sin \alpha \cos \beta + \cos \alpha \sin \beta$, dokažte $\mathrm{d}\left( \sin{\vartheta} \right)=\cos{\vartheta} \mathrm{d}\vartheta$
    • Bonus: Podobně ukažte $ \mathrm{d} \left( \ln{x} \right) = \mathrm{d}x/x $ s pomocí $\ln (1 + \mathrm{d}x) = \mathrm{d}x$
  • Vysvětlete fyzikálně, proč je izobarická tepelná kapacita větší než izochorická.

(8 bodů)4. Série 28. Ročníku - E. lahvované povrchové napětí

Máme válcovou nádobu, ve které vytvoříme z boku kruhový otvor. Nalijeme do ní vodu. Voda bude postupně vytékat, ale v nějaké výšce nad otvorem se výtok vody z nádoby zastaví. Určete povrchové napětí vody na základě změřené výšky nad otvorem, ve které se hladina zastaví. Pokus několikrát opakujte, a to alespoň se třemi různě velkými otvory. Jako válec může posloužit vhodná PET lahev.

Karel se inspiroval tím, co říkal Vojta Žák, že dělá na kroužku fyziky.

(2 body)3. Série 28. Ročníku - 2. bubliny

Určete rozdíl potenciální povrchové energie blány kulaté bubliny a bubliny ve tvaru pravidelného čtyřstěnu. Oba útvary mají stejný vnitřní objem $V$.

Karel si vzpomněl na čtyřstěnné bubliny z Eureky!

(2 body)2. Série 28. Ročníku - 1. Svatá Anna chladna z rána

V chladném ranním oparu odcházíte z domu a zahradní branka funguje tak, jak má – na zmáčknutí kliky se otevře, po zavření a puštění kliky zůstane zavřená, zaklapnutá. Odpoledne se vracíte a říkáte si, který lump zase nezavřel… A ejhle, ono zavřít nejde. Ani po stisknutí kliky nezaleze ocelový jazýček natolik, aby prošel kolem hliníkového rámu. Branka je také z hliníku. Kde je problém? Co zapomněl výrobce při navrhování branky uvažovat? Navrhněte, jaké rozměry by měla mít branka při 20 °C, jestliže uvažujeme, že teplota během roku neklesá pod −30 °C a nepřesahuje 50 °C.

Terka měla zase jednou radost při pozorování záškodnické práce fyziky.

(8 bodů)2. Série 28. Ročníku - E. vodní rozpad

V jaké hloubce pod vodovodním kohoutkem se rozpadá pramínek vody na kapičky? Jak to závisí na průtoku vody?

Lukášovi hráblo (opět).

(4 body)6. Série 27. Ročníku - 3. kule a šlupka

Máme měděnou plnou kouli a měděnou tenkou kulovou slupku (tak tenkou, že můžete zanedbat její tloušťku). Obě mají při pokojové teplotě stejný poloměr. Jak se bude jejich poloměr měnit, když je začneme ohřívat? (Zapište závislost poloměru na teplotě a okomentujte ji.) U měděné slupky uvažujte, že má v sobě malé otvory, které vyrovnávají vnitřní a vnější tlak vzduchu.

Karel se inspiroval knížkou Physics for Scientists and Engineers od Serwaye & Jewetta.

(2 body)4. Série 27. Ročníku - 2. zkumavky

Zkumavky o objemu $3\, \jd{ml}$ a $5\, \jd{ml}$ jsou spojeny krátkou tenkou trubičkou, v níž je pórovitá tepelně nevodivá přepážka, která umožňuje dosažení tlakové rovnováhy v systému. Obě zkumavky původně obsahují kyslík při tlaku $101,25\, \jd{kPa}$ a teplotě $20\, \jd{°C}$. První zkumavku ($3\, \jd{ml}$) ponoříme do nádoby s rovnovážnou soustavou ledu a vody a druhou ($5\, \jd{ml}$) do nádoby s párou. Jaký bude tlak v soustavě obou zkumavek po dosáhnutí mechanické rovnováhy? Jakého tlaku by se dosáhlo, pokud by ve zkumavkách byl za stejných podmínek dusík místo kyslíku?

Kiki vyhrabala něco z fyzikální chemie.

(8 bodů)4. Série 27. Ročníku - E. někdo to rád vlažné

Změřte závislost teploty na čase v uvařeném šálku čaje. Proměřte klidný případ i čaj míchaný lžičkou. Dále ověřte, že doba vychladnutí na pitnou teplotu nezávisí na tom, zda se s čajem míchá či nikoli.

Michal upravil xkcd.

(2 body)6. Série 26. Ročníku - 1. ne zcela chutné pití vody

Pták Fykosák jednoho dne vypil 2 dcl vody. Uběhlo milénium a všechna voda na Zemi se stihla mezitím promíchat. Když teď pták znovu vypije 2 dcl vody, kolik molekul z vody, co vypil právě před miléniem, v nich bude?

Karel se bojí cholery.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz