Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

statistická fyzika

1. Série 1. Ročníku - S. kapitán Brown

Představme si, že v přístavu vyšel z hospody H kapitán Brown. Kapitán je zcela opitý, a tak kráčí náhodně (krok vpřed i vzad jsou stejně pravděpodobné). Předpokládejme, že kráčí podél mola v přímkové dráze. Snaží se dojít ke své lodi, která kotví $k$ kroků od výchozího bodu H.

Nalezněte pravděpodobnost, že po $n$ krocích kapitán dojde ke své lodi. Úlohu se pokuste řešit analyticky, tj. přímo nalezněte hledanou pravděpodobnost $p=p(n,k)$. Úlohu se také pokuste modelovat. Pomocí vhodného generátoru náhodných čísel. (Zkuste třeba házet mincí, eventuelně použít mikropočítač atp.) nechte mnohokrát vyjít námořníka z počátečního bodu a sledujte v kolika pokusech dojde ke své lodi. (Zkuste číselně pro $n=20$, $k=8$).

Rozřešení předchozí úlohy použijte k zodpovězení této otázky: kapitán udělá $n$ kroků; jaká je střední hodnota druhé mocniny jeho vzdálenosti od bodu H?

Návod: Požadované střední hodnoty jsou definovány takto. $$\langle r\rangle=\sum_{k}p(n,k)\cdot k \langle r^2\rangle=\sum_{k}p(n,k)\cdot k^2$$ Potřebné pravděpodobnosti $p(n,k)$ můžete odhadnout z vašich modelových pokusů, i když je neznáte analyticky.

Dovedli byste zdůvodnit analogii mezi kráčením kapitána Browna s pohybem pylových zrnek v kapalině? Je z hlediska vámi spočtených středních hodnot $\langle r\rangle$, $\langle r^2\rangle$ podstatné, že kapitán Brown kráčí v přímce, kdežto pylová zrnka se pohybují v rovině?

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz