Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

elektrický proud

3. Série 17. Ročníku - 3. odporová síť

Jaký je odpor mezi body $A$ a $B$ odporové sítě na obrázku? Svislé úsečky mají odpor $R$ a vodorovné odpor nemají. Síť je nekonečná, na obrázku je z technických důvodů jen konečná iterace.

Vynalezl Pavel Augustinský pro Bělčickou olympiádu.

6. Série 16. Ročníku - 1. záhadný obvod

Ke kondenzátoru o neznámé kapacitě připojíme do série cívku o indukčnosti $L$, obvod připojíme ke zdroji napětí o frekvenci $ω$ a naměříme na nekalibrovaném ampérmetru nějaký proud. Poté do série přípojíme ještě jednu cívku, stejnou jako ta první, a proud v obvodu se nezmění. Jaká je kapacita kondenzátoru?

5. Série 16. Ročníku - 4. síť

Spočtěte odpor mezi body $A$, $B$ na nekonečné síti na obrázku. Všechny hrany sítě mají stejnou délku a odpor.

4. Série 16. Ročníku - P. násobič napětí

Na vstup (IN) obvodu na obr. 1 přivedeme vůči zemi (G) harmonické střídavé napětí o amplitudě $U$ a frekvenci $f$. Jaké napětí naměříme na výstupu (OUT)? Diody považujte za ideální, velikosti kapacit si zvolte nebo řešte úlohu obecně. Nevíte-li si rady, zkuste nejprve jednodušší případ – zapojení pouze se dvěma diodami a kondenzátory (viz obr. 2).

1. Série 16. Ročníku - 1. odporová síť

Pro síť na obr. (všechny odpory jsou stejné, jejich velikost označme R) určete odpor mezi dvěma vrcholy šestiúhelníku (uvažte všechna možná zapojení).

1. Série 16. Ročníku - S. komplexní čísla

 

  • Spočtěte reálnou a imaginární část sin($a+bi)$.
  • Pomocí komplexní symbolické metody odvoďte vztah pro rezonanční frekvenci paralelního RLC obvodu, tj. nalezněte frekvenci, pro kterou má při konstantním napětí celkový proud v obvodu minimální amplitudu.
  • Sečtěte pomocí komplexních čísel následující řady. (Návod: řada $A+Bi$ je geometrická.)

$$A=\sum_{n=0}^{\infty}e^{-n\delta}\cos(n\varphi),   B=\sum_{n=0}^{\infty}e^{-n\delta}\sin(n\varphi)$$

6. Série 15. Ročníku - 2. RC obvod

Mějme sériový $RC-obvod$, který připojíme na zdroj periodického napětí s tzv. obdélníkovým průběhem, tzn. po čas $T/2$ je napětí $U$ a po čas $T/2$ napětí $-U$. Jak bude vypadat průběh napětí na kondenzátoru?

6. Série 15. Ročníku - S. dva dráty

Mějme dva přímé rovnoběžné nekonečně dlouhé kovové vodiče zanedbatelného kruhového průřezu, které jsou od sebe ve vzdálenosti $r$. Směr jednotkového vektoru $\textbf{e}_{3}$ zvolme tak, aby byl rovnoběžný s vodiči. Jednotkový vektor, který leží v rovině určené vodiči, je kolmý na $\textbf{e}_{3}$ a má směr z prvního vodiče k druhému, označme $\textbf{e}_{1}$. Jako vektor $\textbf{e}_{2}$ označujme vektorový součin $\textbf{e}_{3}$ × $\textbf{e}_{1}$. Vektory $\textbf{e}_{1}$, $\textbf{e}_{2}$ a $\textbf{e}_{3}$ pak definují pravotočivý souřadný systém. Vodiči protékají elektrické proudy $I_{1}$ a $I_{2}$. Velikost proudů je kladná, pokud mají směr $\textbf{e}_{3}$. Pomocí transformačních vztahů pro elektrické a magnetické pole ukažte, že první vodič působí na úsek délky $l$ druhého vodiče silou

$\textbf{F}_{l}$ = $– \mu_{0} ⁄ (2\pi)$ $\cdot (I_{1}I_{2}l⁄r)$ $\textbf{e}_{1}$.

K řešení této úlohy užijte následující poznámky. Kovy jsou tvořeny krystalovou mřížkou kladně nabitých iontů, mezi nimiž se pohybují volné elektrony. (Toto je velmi zjednodušený model struktury kovů. Nicméně pro náš problém je postačující.) Pokud ke kovu přiložíme vnější elektrické pole, potom se volné elektrony začnou pohybovat proti směru elektrické intenzity. Tím v kovu vzniká elektrický proud. Rychlost uspořádaného pohybu elektronů je při běžných hodnotách proudu velmi malá, méně než metr za sekundu.

Elektrostatické pole homogenně nabité přímky s délkovou hustotou náboje $\lambda$ je ve vzdálenosti $r$ od zdroje popsáno elektrickou intenzitou o velikosti $E = \lambda / (2\pi\epsilon_{0}r)$. Vektor elektrické intenzity vždy leží v rovině kolmé na přímkový zdroj a jeho směr udává přímka procházející zdrojem a bodem, ve kterém nás zajímá hodnota elektrického pole. Vektor elektrické intenzity směřuje od zdroje, je-li zdroj nabit kladně. Tento výsledek lze získat sečtením (integrací) příspěvků od jednotlivých elementů přímkového zdroje. Příspěvek elementu zdroje je dán Coulombovým zákonem. Další možností je v tomto případě užití Gaussovy věty, neboť směr elektrické intenzity plyne ze symetrie.

Z Maxwellových rovnic plyne pro rychlost světla ve vakuu vztah $c^{2} = 1/\epsilon_{0} \mu_{0}$. O platnosti tohoto vzorce se lze snadno přesvědčit dosazením tabulkových hodnot příslušných fyzikálních konstant.

Zadal autor seriálu Karel Kolář.

1. Série 15. Ročníku - 3. žárovka

Máme žárovku, která svítí na výkonu $100 \,\jd{W}$. Chceme vyrobit žárovku pro výkon $60 \,\jd{W}$ a použít přitom stejný materiál vlákna. Chceme, aby obě žárovky svítily „stejně“ (měly stejnou spektrální vyzařovací charakteristiku). Jaké rozměry musí mít vlákno v $60 \,\jd{W}$ žárovce vzhledem k tomu ve $100 \,\jd{W}$?

Úloha od bývalého šéfa Fykosu Jirky Franty.

4. Série 14. Ročníku - 3. měděný drát

Máme $50\, \jd{kg}$ mědi. Jaký nejdelší drát z tohoto množství materiálu lze vytvořit pro přenášení elektrického proudu $1 \jd{A}$, je-li okolní teplota $20\jd{^{\circ}C}$? (Tepelnou kapacitu okolního vzduchu a přírody považujte za nekonečnou.)

Úlohu navrhl Miroslav Panoš.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz