Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

termodynamika

(6 bodů)4. Série 29. Ročníku - S. pracovní

 

  • Z nerovnosti

$$\Delta S_{\mathrm{tot}} \geq 0 $$ ze seriálu vyjádřete $W$ a odvoďte tak nerovnost pro práci $$W \leq Q \left( 1 - \frac {T_\textrm{C}}{T_\textrm{H}} \right) \, .$$

  • Vypočítejte účinnost Carnotova cyklu bez použití entropie.

Pomůcka: Napište si 4 rovnice spojující 4 vrcholy Carnotova cyklu: $$p_1 V_1 = p_2 V_2, \;\; p_2 V_2^{\kappa} = p_3V_3^{\kappa}, \;\; p_3V_3 = p_4V_4, \;\; p_4V_4^{\kappa} = p_1V_1^{\kappa}$$ a vynásobte je všechny čtyři spolu. Po úpravě dostanete $$\frac {V_2}{V_1} = \frac {V_3}{V_4}\, .$$ Následně stačí použít vzorec na práci při izotermickém procesu: když přechází proces z objemu $V_{\textrm{A}}$ do $V_{\textrm{B}}$, práce vykonaná na plyn je $$nRT\;\ln{\left(\frac{V_\textrm{A}}{V_\textrm{B}}\right)}\, .$$ Teď už si stačí jen uvědomit, že práce při izotermickém ději je rovná teplu (se správným znaménkem) a vypočítat získanou práci (vzpomeňte si, že adiabatické procesy nepřispívají) a odebrané teplo. Na řešení stačí doplnit detaily tohoto postupu.

  • Minule jste pracovali s $pV$ a $Tp$ diagramem. Udělejte stejné cvičení s $TS$ diagramem, tedy nakreslete tam izotermický, izobarický, izochorický a adiabatický proces. Nakreslete do diagramu také cestu plynu v Carnotově cyklu a označte správně směr a vrcholy, aby souhlasily s obrázkem v seriálu.
  • V seriálu jsme se zmínili, že někdy je třeba dávat pozor na přijaté a odebrané teplo. Někdy se totiž to, jestli teplo přijímáme nebo odevzdáváme, mění v průběhu procesu. Jeden z příkladů je proces

$$p=p_0\;\mathrm{e}^{-\frac{V}{V_0}}\, ,$$ kde $p_{0}$ a $V_{0}$ jsou konstanty. Určete, pro jaké hodnoty $V$ (při rozpínání) proudí teplo do plynu a kdy z plynu.

(2 body)3. Série 29. Ročníku - 1. bláznivá rybička

V akváriu ve tvaru koule s poloměrem $r=10\;\mathrm{cm}$ plně naplněném vodou plavou v opačných směrech dvě stejné rybičky. Rybička má průřez $S=5\;\mathrm{cm}$, Newtonův odporový koeficient $C=0,\! 2$ a plave rychlostí $v=5\;\mathrm{km}\cdot\mathrm{h}^{-1}$ vůči vodě. Jak dlouho musí rybičky v akváriu plavat, aby ohřály vodu o $1$ stupeň Celsia? Tepelné ztráty a biologické procesy v rybičkách zanedbejte.

(6 bodů)3. Série 29. Ročníku - S. entropická

 

  • Všechny stavy ideálního plynu umíme nakreslit jako digramy: $pV$ diagram, $pT$ diagram a tak dále. Na svislou osu se vynáší první veličina, na vodorovnou osu se vynáší druhá veličina. Každý bod tedy určuje dva parametry. Načrtněte do $pV$ diagramu 4 děje s ideálním plynem, které znáte. Udělejte to stejné pro $Tp$ diagram. Jak by vypadal $UT$ diagram? Vysvětlete, jak se nevhodnost těchto dvou proměnných jeví na tomto obrázku.
  • Jaké jednotky má entropie? Jaké jiné veličiny s těmito jednotkami znáte?
  • V seriálu jsme rozebrali případ nárůstu entropie, když plyn přijímal teplo. Proveďte podobnou úvahu pro plyn odevzdávající teplo.
  • Víte, že při adiabatickém ději se entropie nemění. Proto entropie jako funkce objemu a tlaku $S(p,V)$ může obsahovat jen takovou kombinaci objemu a tlaku, která se také při adiabatickém procesu nemění. Jaký je to výraz? Nakreslete na $pV$ diagram (svislá osa je $p$, vodorovná $V$) křivky, na kterých je entropie konstantní. Souhlasí výsledek této úvahy se vzorcem, který jsme pro entropii odvodili?
  • Vyjádřete entropii ideálního plynu jako funkci $S(p,V)$, $S(T,V)$ a $S(U,V)$.

(6 bodů)2. Série 29. Ročníku - S. procesní

 

  • Které ze skupiny procesů (izobarický, izochorický, izotermický a adiabatický) můžou být vratné?
  • Vezměte vztah $T=pV / (nR) $ s $n=1\;\textrm{mol}$, $p=100\;\textrm{kPa}$ a $V=22\;\textrm{l}$. O kolik se změní $T$, když $p$ i $V$ zvětšíme o $10\;\%$, $1\;\%$ a $0,\! 1\; \%$? Spočítejte to dvěma způsoby: přesně a pomocí vztahu $\mathrm{d}T=T_{,p}\mathrm{d}p + T_{,V} \mathrm{d}V$. Jak se tyto výsledky liší?
  • d gymnastika:
    • Ukažte, že $\mathrm{d} \left[ C f(x) \right] = C \mathrm{d} [f(x)]$, kde $C$ je konstanta.
    • Vypočítejte $\mathrm{d} (x^2)$ a $\mathrm{d} (x^3)$
    • Ukažte, že $\mathrm{d} \left( 1/x \right)= - dx/x^2$ z definice, tedy $\mathrm{d} \left(\frac{1}{x}\right)= \frac{1}{x+ \mathrm{d} x} - \frac{1}{x}$. Může se vám hodit: $(x + \mathrm{d} x)(x-\mathrm{d} x) = x^2 - (\mathrm{d} x)^2 = x^2$.
    • Bonus: Platí $\sin{(\mathrm{d} \vartheta)} = \mathrm{d} \vartheta$ a $\cos{\mathrm{d} \vartheta} = 1 $. Také máte součtový vzorec $\sin{(\alpha + \beta)}= \sin \alpha \cos \beta + \cos \alpha \sin \beta$, dokažte $\mathrm{d}\left( \sin{\vartheta} \right)=\cos{\vartheta} \mathrm{d}\vartheta$
    • Bonus: Podobně ukažte $ \mathrm{d} \left( \ln{x} \right) = \mathrm{d}x/x $ s pomocí $\ln (1 + \mathrm{d}x) = \mathrm{d}x$
  • Vysvětlete fyzikálně, proč je izobarická tepelná kapacita větší než izochorická.

(6 bodů)1. Série 29. Ročníku - S. zahřívací

 

  • Na rozehřátí a seznámení se s čísly zjistěte, do jaké výšky byste mohli zdvihnout průměrného člověka ($70\; \textrm{kg}$), využijete-li celou energii běžné tyčinky Mars (okolo $250\; \textrm{Cal}$ pro $50\textrm{g}$ tyčinku). Také vypočtěte, jaká energie je $k_{\textrm{B}}T$ při pokojové teplotě a vyjádřete ji také v elektronvoltech (pokud neznáte takovou jednotku energie, vězte, že je to energie, kterou získá elektron při urychlení na rozdílu potenciálů $1\; \textrm{V}$, a číselně $1\;\textrm{eV} = 1,\! 602 \cdot 10^{-19}\; \textrm{J}$).
  • Se stavovou rovnicí se dá hodně cvičit. Když namísto počtu částic použijete molární množství $n$, dostanete

$$pV = n N_{\mathrm{A}} k_{\mathrm{B}} T \, ,$$ kde se součin $N_{\textrm{A}}k_{\textrm{B}}$ značí $R$ a nazývá se univerzální plynová konstanta. Určete její hodnotu. Také dále upravte stavovou rovnici do tvaru, ve kterém se vyskytuje hmotnost plynu, a potom do tvaru obsahujícího hustotu plynu.

  • Určete objem molu plynu při pokojové teplotě. Toto číslo je užitečné znát zpaměti.
  • Nakonec trochu úvahová úloha. Povšimněte si, že v diskusi o práci ideálního plynu jsme automaticky použili tlak plynu. Zkuste sebe a mě přesvědčit, že je to ten správný tlak – já bych totiž namítal, že jsme mohli použít okolní tlak nebo dokonce rozdíl tlaků vně a uvnitř.

Poznámka: Hodnocení této části bude mírné, nebojte se zamyslet a napsat cokoli, na co přijdete.

(8 bodů)5. Série 28. Ročníku - E. sladíme

Změřte závislost teploty tuhnutí vodného roztoku sacharózy na koncentraci za atmosférického tlaku.

Pikoš v zimě sladil chodník.

(5 bodů)3. Série 28. Ročníku - 5. sféricky symetrické kuře ve vakuu

Do nádoby o objemu $V=1\;\mathrm{m^3}$, ve které je velmi nízký tlak (prakticky dokonalé vakuum), umístíme $V_{0}=1\,\jd{l}$ vody o pokojové teplotě $t_{0}$. Jaký bude konečný stav, ve kterém se bude nacházet nádoba a voda v ní? Pro účely výpočtu předpokládejte, že nádoba je dokonale tepelně izolovaná od okolního prostředí a má zanedbatelnou tepelnou kapacitu.

Karel se nechal inspirovat problémem, o kterém spekuloval jeden spolužák na Didaktice II.

(4 body)2. Série 28. Ročníku - 4. Boeing

Uvažujte pneumatiku válcovitého tvaru o poloměru $R$ s vnitřním otvorem o poloměru $r$ šířky $d$ huštěnou na tlak $p$. Pneumatiku zatížíme silou $F$. Při tomto zatížení se změní tvar pneumatiky z válce na válcovou úseč se stejným vnitřním i vnějším poloměrem. Předpokládejte, že se teplota pneumatiky zatížením nezmění. Určete plochu styku pneumatiky s vozovkou.

Lukáš si v noci hraje v postýlce s letadýlkem.

(3 body)5. Série 27. Ročníku - 3. ta jemná nádoba

Mějme válcovou nádobu, jež zaujímá objem $V=1\, \jd{l}$. Nádoba je uzavřena vzduchotěsným pohyblivým pístem, který má nezanedbatelnou hmotnost $M$. Dále víme, že nádoba je vodorovnými přepážkami rozdělena na $n$ komor a v $i$-té komoře (číslováno odshora) je $2^{i}a$ částic, kde $a$ je blíže neurčená konstanta. Přepážky nejsou k nádobě připevněny, přesto nedovolují, aby si komory, v nichž je ideální plyn, vyměňovaly teplo nebo částice. Celý systém je v rovnováze. Poté zdvojnásobíme hmotnost pístu a počkáme, až se náš systém opět ustaví v rovnováze. Jak se změní objem, který plyn v nádobě zaujímá? Atmosferický tlak neuvažujte.

Náry pod tlakem vymyslel úlohu o tlaku.

(2 body)4. Série 27. Ročníku - 2. zkumavky

Zkumavky o objemu $3\, \jd{ml}$ a $5\, \jd{ml}$ jsou spojeny krátkou tenkou trubičkou, v níž je pórovitá tepelně nevodivá přepážka, která umožňuje dosažení tlakové rovnováhy v systému. Obě zkumavky původně obsahují kyslík při tlaku $101,25\, \jd{kPa}$ a teplotě $20\, \jd{°C}$. První zkumavku ($3\, \jd{ml}$) ponoříme do nádoby s rovnovážnou soustavou ledu a vody a druhou ($5\, \jd{ml}$) do nádoby s párou. Jaký bude tlak v soustavě obou zkumavek po dosáhnutí mechanické rovnováhy? Jakého tlaku by se dosáhlo, pokud by ve zkumavkách byl za stejných podmínek dusík místo kyslíku?

Kiki vyhrabala něco z fyzikální chemie.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz