Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

ostatní

(6 bodů)4. Série 28. Ročníku - S. Ljapunovská

 

  • Uvažujte propisku o délce 10 cm s těžištěm přesně v půlce a $g=9.81\;\mathrm{m}\cdot \mathrm{s}^{-2}$. Nyní si představte, že jste propisku postavili na stůl s nulovou výchylkou $δx$ s přesností na $n$ desetinných míst a s nulovou rychlostí. Za jak dlouho po postavení propisky si budete moct být jisti pouze s $n-1$ desetinnými místy nulovostí výchylky?
  • Uvažujte model počasí s největším Ljapunovovým exponentem $λ=1.16\cdot 10^{-5}\,s^{-1}$. Předpověď počasí přestává být použitelná, pokud je její chyba více než 20 %. Pokud jste dokázali změřit stav počasí s přesností na 1 %, na jak dlouho byste odhadovali, že bude dobrá vaše předpověď? Odpověď podejte v dnech a hodinách.
  • Vezměte si Lorenzův model konvekce z minulého dílu, opište si z něj funkci $f(xi,t)$ a nasimulujte a vykreslete si hodnotu parametru $X(t)$ pro dvě různé trajektorie pomocí příkazů X01=1;

Y01=2;

Z01=5;

X02=…;

Y02=…;

Z02=…;

nastaveni = odeset('InitialStep', 0.01,'MaxStep',0.1);

pocPodminka1=[X01,Y01,Z01];

reseni1=ode45(@f,[0,45],pocPodminka1,nastaveni);

pocPodminka2=[X02,Y02,Z02];

reseni2=ode45(@f,[0,45],pocPodminka2,nastaveni);

plot(reseni1.x,reseni1.y(:,1),reseni2.x,reseni2.y(:,1));

pause()

</pre> Místo tří teček u $X02,Y02,Z02$ musíte zadat počáteční podmínky pro druhou trajektorii. Pusťte kód alespoň pro pět řádově odlišných, ale malých odchylek a poznamenejte si čas, ve kterém se druhá trajektorie od první kvalitativně odlepí (tj. směřuje například na úplně druhou stranu). Odchylku nezmenšujte pod řád cca $10^{-8}$, protože pak se začnou projevovat nepřesnosti numerické integrace. Načrtněte závislost odlepovacího času na řádu odchylky.

Bonus: Pokuste se ze získané závislosti odlepovacího času na velikosti odchylky odhadnout odpovídající Ljapunovův exponent. Budete potřebovat víc než pět běhů a můžete předpokládat, že v okamžiku odlepení velikost odchylky pokaždé zrovna překročila nějaké konstantní $Δ_{c}$.

(6 bodů)3. Série 28. Ročníku - S. numerická

 

  • Podívejte se na rovnice Lorenzova modelu a sepište skript na jeho simulaci v Octave (na to si případně osvěžte i druhý díl seriálu). Spolu s vykreslujícím příkazem by váš skript měl vypadat zhruba takto: …

function xidot = f(t,xi)

xdot=…;

ydot=…;

zdot= …;

xidot = [xdot;ydot;zdot];

endfunction

nastaveni = odeset('InitialStep', 0.01,'MaxStep',0.1);

pocPodminka=[0.2,0.3,0.4];

reseni=ode45(@f,[0,300],pocPodminka,nastaveni);

plot3(reseni.y(:,1),reseni.y(:,2),reseni.y(:,3)); </pre> Jen místo tří teček doplňte zbytek programu podobně jako v druhém dílu seriálu a použijte $σ=9,5$, $b=8⁄3$. Pak zjistěte alespoň s přesností na jednotky, pro jaké kladné $r$ přechází systém z asymptotického zastavování se na chaotickou oscilaci (na počátečních podmínkách nezáleží).

  • Zde je plný text octavovského skriptu pro simulaci a vizualizaci pohybu částice v gravitačním poli hmotného tělesa v rovině $xy$, kde všechny parametry a konstanty jsou rovny jedné: clear all

pkg load odepkg

function xidot = f(t,xi)

alfa=0.1;

vx=xi(3);

vy=xi(4);

r=sqrt(xi(1)^2+xi(2)^2);

ax=-xi(1)/r^3;

ay=-xi(2)/r^3;

xidot = [vx;vy;ax;ay];

endfunction

nastaveni = odeset('InitialStep', 0.01,'MaxStep',0.1);

x0=0;

y0=1;

vx0=…;

vy0=0;

pocPodminka=[x0,y0,vx0,vy0];

reseni=ode45(@f,[0,100],pocPodminka,nastaveni)

plot(reseni.y(:,1),reseni.y(:,2));

pause()</pre>

  • Zvolte počáteční podmínky $x0=0,y0=1,vy0=0$ a počáteční rychlost ve směru $x$ nenulovou tak, aby byla částice vázaná, tj. neulétla z dosahu centra.
  • Přidejte ke gravitační síle ve skriptu sílu $-α\textbf{r}⁄r^{4}$, kde $αje$ malé kladné číslo. Volte postupně několik zvětšujících se $α$ počínaje $α=10^{-3}$ a ukažte, že způsobují kvaziperiodický pohyb.

(2 body)2. Série 28. Ročníku - 2. poživačná buňka

Odhadněte na základě znalostí pouze makroskopicky měřitelných veličin, počtu buněk v lidském těle a počtu částic v látkovém množství jednoho molu, kolik molekul kyslíku „spotřebuje“ denně jedna lidská buňka. Potřebné údaje k výpočtu si nalezněte a svoje zdroje nezapomeňte citovat.

Karel přemýšlel v metru.

(5 bodů)2. Série 28. Ročníku - P. problém obchodního cestujícího

Když se začínaly prosazovat digitální mobilní telefony, byl často problém se příjmem hovorů v automobilu. Nyní se to nejvíce týká vlaků. Jaké faktory ovlivňují přenos dat v GSM síti a jak mohou ovlivnit dostupnost signálu operátora? Jak by se proti tomu dalo bojovat?

Aleš P. jel zase jednou první třídou ve vlaku a výjimečně ho něco napadlo.

(2 body)4. Série 27. Ročníku - 1. zase jedna neořezaná

Čerstvě ořezaná tužka 6B má hrot tvaru kužele s poloměrem podstavy $r=1\;\mathrm{mm}$ a výškou $h=5\;\mathrm{mm}$. Jak dlouhou čáru s ní dokážeme udělat, jestliže vzdálenost dvou grafitových vrstev je $d=3,4\, Å$ a stopa tuhy obsahuje takovýchto vrstev v průměru $n=100?$

Mirek počítal, za jak dlouho si bude muset sehnat ořezávátko.

(5 bodů)4. Série 27. Ročníku - P. to pravé gravitační zrychlení

Faleš chtěl v Praze (V Holešovičkách 2 v přízemí) určit hodnotu gravitačního zrychlení z experimentu, kdy pouštěl kulatý míček z výšky pár metrů na Zemi. Rozmyslete si, jaké korekce musel při zpracování měření zahrnout. Poté navrhněte vlastní experiment na stanovení gravitačního zrychlení a diskutujte jeho přesnost.

Karel přemýšlel nad rozdílem mezi tíhovým zrychlením a gravitační silou.

(5 bodů)3. Série 27. Ročníku - P. solární pohon

Mohlo by letadlo létat na solární pohon?

Dominika s Honzou a Michalem chtěli odletět to teplých krajin.

(2 body)1. Série 27. Ročníku - 1. zlatá přehrada

Kolik cihliček (kvádříků) ze čtyřiadvaceti karátového zlata o rozměrech $10\;\mathrm{cm}$, $3 \;\mathrm{cm}$ a $1 \;\mathrm{cm}$ by se vešlo do vodní nádrže Orlík? Jaký zhruba tlak bude působit na cihličku, která je na dně v nejhlubším místě nádrže?

Karel se chtěl topit ve zlatě.

(4 body)5. Série 26. Ročníku - P. Praha pod vodou

Vzpomeňte si na velké povodně z roku 2002. Odhadněte, kolik vody pojme pražské metro při povodních. Důležité rozměry jako velikosti souprav, počet stanic, celkovou délku tubusů metra a další si najděte na internetu.

Karel se topil.

(2 body)4. Série 26. Ročníku - 1. antieinsteinovská

Napište nám, jaký je váš nejoblíbenější fyzik/fyzička, kromě Einsteina. Co udělal/a? Proč je podle vás tak skvělý/á? Proč by měl/a být známý/á? Rozepište se o jeho/jejích objevech a životě.

Karel propadl historickým okénkem.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz