Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (24)elektrické pole (71)elektrický proud (76)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (72)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (155)vlnění (51)

molekulová fyzika

(10 bodů)5. Série 36. Ročníku - S. ethanol či methanol?

Vazebná energie molekuly fluoru je přibližně $37 \mathrm{kcal/mol}$. Pokud uvážíme dosah vazebných interakcí přibližně $3 \mathrm{\AA }$ od optimální vzdálenosti, jakou (průměrnou) silou musíme působit, abychom molekulu roztrhli? Spočítejte „tuhost“ molekuly fluoru, pokud by uprostřed tohoto rozmezí působila síla o velikosti této průměrné síly. Jaká by byla vibrační frekvence této molekuly? Srovnejte s experimentální hodnotou $916{,}6 \mathrm{cm^{-1}}$. ($4 \mathrm{b}$)

Zkuste pomocí Psi4 spočítat disociační křivku $\mathrm {F_2}$ a proložit ji v okolí minima parabolou. Jaká vám z ní tentokrát vyjde energie vibračních přechodů? ($3 \mathrm{b}$)

Máte dvě lahve alkoholu, které vám přišly přinejmenším podezřelé. Vzali jste je tedy do laboratoře a získali z nich následující Ramanova spektra. Pomocí programu Psi4 spočítejte, na jakých frekvencích jsou vibrační přechody molekul metanolu i etanolu, a na základě toho odhadněte, ve které lahvi je methanol a ve které ethanol. Můžete využít přibližné geometrie ethanolu a methanolu, které jsou součástí zadání na webu. ($3 \mathrm{b}$)

Ramanovo spektrum lahve A Ramanovo spektrum lahve B

Alkohol od Mikuláše?!

(10 bodů)4. Série 36. Ročníku - S. kvanta molekul

  1. Na začátku seriálu jsme zmínili několik aproximací, které jsme udělali – jednak zafixování jader a jednak zanedbání relativistických efektů. Pro které prvky čekáte, že se budou elektrony nejvíce vzájemně ovlivňovat s pohybem jader a proč? A ve které části periodické tabulky si myslíte, že se nejvíce projeví relativistické efekty? Z jakého důvodu? $\(2 \mathrm{b}\)$
  2. Celková energie molekuly vody, jak ji dostaneme z kvantově chemického výpočtu, je cca $-75 \mathrm{Ha}$. Energie uvolněná slučováním vodíku a kyslíku na vodu je $242 \mathrm{kJ\cdot mol^{-1}}$. Pokud spočítáme energii reaktantů i produktů s chybou $1 \mathrm{\%}$, jaká bude chyba v určení reakční energie? Také zkuste najít nějakou analogii s měřením v reálném světě. (Například: „Zvážím se s pětikorunou a bez ní, abych určil její hmotnost.“) $\(3 \mathrm{b}\)$
  3. Nainstalujte si program Psi4 a pokuste se spočítat, o kolik se liší energie lodičkové a (zkřížené) vaničkové konformace cyklohexanu. Můžete použít přiložené vstupní soubory s již optimalizovanou geometrií. Jak moc se liší výsledek od experimentální hodnoty $21 \mathrm{kJ\cdot mol^{-1}}$? $\(2 \mathrm{b}\)$ $\\$ Poznámka: Pokud narazíte na problémy s programem Psi4, neváhejte se ozvat na email ${\href{mailto:mikulas@fykos.cz}{mikulas@fykos.cz}}$
  4. Zkuste spočítat energii reakce pro chloraci benzenu $\ce{C}_{6}\ce{H}_{6} + \ce{Cl}_{2} \Rightarrow \ce{C}_{6}\ce{H}_{5}\ce{Cl} + \ce{HCl}$. Srovnejte s experimentální hodnotou $-134 \mathrm{kJ\cdot mol^{-1}}$. Můžete využít geometrii molekuly benzenu. $\(3 \mathrm{b}\)$ $\\$ Bonus: Vyberte svoji oblíbenou (nebo jakoukoliv jinou) chemickou reakci a spočítejte její energii. $\(\mathrm{až} +3 \mathrm{b}\)$

Mikuláš rozdává i po Vánocích.

(10 bodů)3. Série 36. Ročníku - S. kvanta orbitalů

  1. Podobně jako v seriálu vytvořte pomocí Hückelovy metody matici hamiltoniánu pro molekulu cyklobutadienu a ověřte, že její vlastní čísla jsou $\alpha +2\beta $, $\alpha $, $\alpha $, $\alpha -2\beta $. Načrtněte do diagramu, jaké jsou energie vzniklých orbitalů a jak by je obsadily elektrony. $(4~b)$
    Bonus: Jaký je zásadní rozdíl v charakteru těchto orbitalů a jejich obsazení oproti molekule benzenu, kterou jsme si ukázali v seriálu? Jaké to má pro molekulu cyklobutadienu důsledky? $(2~b)$
  2. Zkuste se vrátit k molekule betakarotenu a znovu spočítat, na jaké vlnové délce by měla absorbovat, tentokrát pomocí Hückelovy metody. Kolik by musel být parametr $\beta $, aby vyšla experimentální hodnota?
    Alternativa: Pokud narazíte na problém s diagonalizací hamiltoniánu, proveďte úlohu s molekulou hexa-1,3,5-trienu. Experimentální hodnota absorpce je v tomto případě na vlnové délce $250 \mathrm{nm}$. $(4~b)$
  3. Co se stane s molekulou (stačí taková, která má jen jednoduché vazby), pokud pomocí UV světla excitujeme elektron ze $\sigma $ do $\sigma ^\ast $ orbitalu? $(2~b)$

Mikuláš znovu naděloval, tentokrát dokonce skoro ve správnou roční dobu.

(10 bodů)2. Série 36. Ročníku - P. planetární atmosféra

Jaké parametry musí mít planeta, aby si udržela atmosféru srovnatelnou se Zemí? Jaké podmínky jsou nutné, aby takovou atmosféru získala?

Karel si vzpomněl na úlohu.

(5 bodů)6. Série 35. Ročníku - 3. povětrná bublinka

Bublifukem vytvoříme malou mýdlovou bublinku. Jakou rychlostí bude padat k zemi? Bublinka má vnější poloměr $R$ a plošnou hustotu $s$.

Karel dělal bublinky ve vaně.

(10 bodů)4. Série 35. Ročníku - S. svítíme

  1. V jaké vzdálenosti od povrchu terče (předpokládejte, že je z uhlíku a pro laser o vlnové délce $351 \mathrm{nm}$) se nachází kritický povrch a v jaké vzdálenosti dochází ke vzniku dvouplazmonového rozpadu, pokud je charakteristická délka plazmatu1) $50 \mathrm{\micro m}$? Dále předpokládejte
  1. exponenciální pokles hustoty plazmatu s rostoucí vzdáleností od terče,
  2. lineární pokles hustoty plazmatu s rostoucí vzdáleností od terče.
  1. Jakou musí mít elektrony energii, aby prošly od kritického povrchu ke skutečnému povrchu terče? Pro dosah elektronů v uhlíkovém plazmatu využijte empirický vztah $R = 0{,}933~4 E^{1{,}756~7}$, kde $E$ je v $\mathrm{MeV}$ a $R$ je v $\mathrm{g.cm^{-2}}$.
  2. Na jaké délce se elektrony v elektrickém poli plazmové vlny urychlí na tyto energie?
  3. Jaké vlnové délky rozptýleného světla můžeme pozorovat v případě stimulovaného Ramanova rozptylu pro laser o vlnové délce $351 \mathrm{nm}$?
1)
Hustota plazmatu $n_e$ v závislosti na vzdálenosti od terče se typicky vyjadřuje jako funkce $n_e = \f {f}{\frac {x}{x_c}}$, kde $x$ je vzdálenost od terče a $x_c$ je tzv. charakteristická delka plazmatu, která představuje škálovací parametr od terče.

(13 bodů)2. Série 35. Ročníku - E. řídký nebo hustý líh

Změřte závislost hustoty roztoku lihu ve vodě na jeho objemové koncentraci ve vodě. Zařaďte pro srovnání i měření čistého lihu a čisté vody.

Pozor na správné směšování lihu s vodou – nezapomínejte na to, že objem slité vody a lihu není přesně součtem jejich původních objemů.

Karel si říkal, že by si účastníci mohli trochu čichnout.

(10 bodů)2. Série 35. Ročníku - S. stlačujeme

Jakou energii musí mít laserový impuls trvající $10 \mathrm{ns}$, aby jím vytvořená rázová vlna byla schopná ohřát plazma na teplotu, při níž může dojít k termojaderné fúzní reakci? Jakou hustotu bude mít stlačené palivo? Poznámka: Přepokládejte, že počáteční plazma je jednoatomový ideální plyn.

(10 bodů)1. Série 35. Ročníku - S. začínáme slučovat

  1. Spočítejte energetický výtěžek následujících reakcí a kinetické energie produktů reakce

\[\begin{align*} {}^{2}\mathrm {D} + {}^{3}\mathrm {T} &\rightarrow {}^{4}\mathrm {He} + \mathrm {n}  ,\\ {}^{2}\mathrm {D} + {}^{2}\mathrm {D} &\rightarrow {}^{3}\mathrm {T} + \mathrm {p}  ,\\ {}^{2}\mathrm {D} + {}^{2}\mathrm {D} &\rightarrow {}^{3}\mathrm {He} + \mathrm {n}  ,\\ {}^{3}\mathrm {T} + {}^{3}\mathrm {T} &\rightarrow {}^{4}\mathrm {He} + 2\mathrm {n}  ,\\ {}^{3}\mathrm {He} + {}^{3}\mathrm {He} &\rightarrow {}^{4}\mathrm {He} + 2\mathrm {p}  ,\\ {}^{3}\mathrm {T} + {}^{3}\mathrm {He} &\rightarrow {}^{4}\mathrm {He} + \mathrm {n} + \mathrm {p}  ,\\ {}^{3}\mathrm {T} + {}^{3}\mathrm {He} &\rightarrow {}^{4}\mathrm {He} + {}^{2}\mathrm {D}  ,\\ \mathrm {p} + {}^{11}\mathrm {B} &\rightarrow 3\;{}^{4}\mathrm {He}  ,\\ {}^{2}\mathrm {D} + {}^{3}\mathrm {He} &\rightarrow {}^{4}\mathrm {He} + \mathrm {p}  . \end {align*}\]

  1. Pomocí grafu rychlosti výtěžku v textu seriálu pro vámi zvolenou teplotu odvoďte Lawsonovo kritérium pro dobu udržení inerciální fúze deuteria s deuteriem, protonu s borem a deuteria s heliem 3 a pro jednotlivé případy určete součin velikosti palivové peletky a hustotu stlačeného paliva. Mají tyto reakce nějakou výhodu oproti tradiční DT fúzi?
  2. Určete, jak by vypadalo Lawsonovo kritérium pro nemaxwellovské rozdělení rychlostí, kdyby kinetická energie částic byla
  1. $E\_k = k\_B T^{\alpha }$,
  2. $E\_k = a T^3 + b T^2 + c T$.

Byla by takováto fúze vůbec realizovatelná? Pokud ano, jaké by mělo být palivo (fúzní reakce), jak velká by měla být palivová peletka a na jakou hustotu by se měla stlačit?

(10 bodů)4. Série 34. Ročníku - P. pták Fykosák na dovolené

Jak by fungovalo letectví na jiných planetách (s atmosférou)? Zajímejte se hlavně o proudová letadla. Které parametry by působily pozitivněji a které negativněji než na Zemi?

Karel byl v muzeu letectví v Košicích.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz