Termín uploadu: 24. 3. 2020 23:59:59
Na mostě dlouhém $300 \mathrm{m}$ stojí nákladní vlak, jehož váha je rovnoměrně rozložena na plochu všech devíti ocelových pilířů mostu. Každý pilíř má podstavu tvaru čtverce se stranou $a = 2,0 \mathrm{m}$ a je vysoký $h=10 \mathrm{m}$. O kolik sa vlivem tíhy vlaku stlačí ocelové pilíře? Modul pružnosti oceli v tlaku je $E = 200 \mathrm{GPa}$, celková hmotnost vlaku je $m = 574 \mathrm{t}$.
Danka pozorovala vlaky z okna pokoje.
Jáchym chce doma nakládat zelí, a tak si koupil válcový sud. Z obchodu ho však musí nějak dostat metrem domů. Sud i s víkem si můžeme představit jako dutý válec s vnějším poloměrem $r$ a s vnější výškou $h$. Šířka stěn, podstavy i víka je $t$. Sud je vyrobený z materiálu s hustotou $\rho $. S jakým největším zrychlením se může souprava metra pohybovat, aby se volně stojící sud vůči ní nijak nepohnul? Koeficient tření mezi podlahou vagónu a sudem je $f$.
Dodo zase poslouchá Jáchymovy výmluvy.
Přesně na hraně stolu leží homogenní koule o poloměru $r$. Jelikož je to „polovratká“ poloha, začne koule padat ze stolu. Na jakou úhlovou rychlost se roztočí? Předpokládejte, že koule neprokluzuje.
Matějovi se ztratil tenisák.
Kruhová kovová smyčka s poloměrem $r = 15 \mathrm{cm}$ má hmotnost $m = 18 \mathrm{g }$. Pokud bychom ji rozstřihli, vznikl by drát s odporem $R = 3{,}5 \mathrm{m\Ohm }$. Na počátku je smyčka v klidu. V čase $t = 0$ zapneme homogenní magnetické pole kolmé k rovině smyčky s časovým průběhem $B(t) = \alpha t$, kde $\alpha = 1 \mathrm{mT\cdot s^{-1}}$ je konstanta. Smyčka se v důsledku přítomnosti nestacionárního magnetického pole začne nepatrně otáčet kolem své osy. Určete velikost úhlové rychlosti $\omega $ v čase $t = 0{,}1 \mathrm{s}$. Deformaci smyčky neuvažujte.
Vašek se rád zabývá bizarními jevy.
Určete, jaký fázový posun $\Delta \Phi $ vznikne přechodem laserového svazku s vlnovou délkou $\lambda _0$ přes skleněnou desku s klidovou tloušťkou $h$ a s indexem lomu $n$, která se pohybuje ve směru svazku rovnoměrně rychlostí $v$, oproti případu, kdy je deska vůči zdroji i pozorovateli v klidu. Zajímá nás především první nenulový člen rozvoje podle rychlosti desky.
Dodo a optické praktikum.
Odhadněte čas, který uplyne mezi stlačením vypínače a rozsvícením světelného zdroje. Zvlášť vyřešte pro žárovku, zářivku, LED a neonovou trubici. Diskutujte co nejvíc faktorů, které tento čas ovlivňují.
Dodo vyhodil jističe.
Změřte závislost teploty kapaliny v otevřeném hrnku na čase. Jako kapalinu použijte nejdříve vodu, potom olej a nakonec vodu s malou vrstvou oleje na povrchu. Vrstva by měla být co nejtenčí, ale zároveň musí pokrývat celý povrch vody. Měřte v rozsahu od $90 \mathrm{\C }$ do $50 \mathrm{\C }$. Dávejte pozor na to, aby veškeré podmínky byly při všech experimentech stejné (použijte stejný hrnek se stejnou počáteční teplotou, teploměr ponechte celou dobu v kapalině pokaždé na stejném místě atd.). Popište co nejlépe experimentální aparaturu, srovnejte chladnutí v jednotlivých případech a výsledky diskutujte.
Karel měl v tropickém vedru horkou polévku v předehřáté misce.
Karel napínal až do po poslední chvíle.