Termín uploadu: -
Vezmeme dva jehlany stejných rozměrů se čtvercovou podstavou o délce podstavné hrany $a$ a výšce $v$. Kromě toho, že jejich rozměry jsou stejné, i jejich hmotnost je stejná. Jeden má drátěné hrany a druhý má plechové stěny. Postavíme je vedle sebe na podložku, kterou začneme naklánět. Který z modelů se dříve překlopí? Tření je tak velké, že jehlany po podložce nebudou klouzat.
Vodní hodiny jsou přesýpací hodiny, ve kterých se místo přesypávání písku přelévá voda. Navrhněte jejich tvar tak, aby hladina vody v horní nádobce klesala konstantní rychlostí. Vzduch je z nádobek vyčerpán.
Stavební firma Krychle staví domy pouze krychlovitého tvaru. Její nejnovější stavba má hranu dlouhou $100\,\jd{ m}$. Jak je možné, že oproti jejich první stavbě (s hranou dlouhou $10\,\jd{ m}$) klesly značně náklady na vytápění jednoho bytu? Kolikrát? Byty se staví stále stejně velké a firma používá stále stejné suroviny.
Kdy ukáží pružinové váhy na rovníku větší hmotnost tělesa: v poledne nebo o půlnoci? O kolik procent se budou údaje lišit? Potřebné hodnoty vyhledejte ve fyzikálních tabulkách. Uvažujte pouze soustavu Země – Slunce (Měsíc někam odletěl).
Jistě jste si už někdy všimli, že když vytahujeme skleničku z umyvadla dnem vzhůru, zůstává v ní voda až do té chvíle, kdy její okraj vytáhneme nad hladinu. Pak všechna vyteče. Vysvětlete proč. Uvědomte si, že na povrch kapaliny ve skleničce obrácené dnem vzhůru působí tlak vzduchu, který dokáže vytlačit až deset metrů vodního sloupce!
Změřte poloměr zrnka křídového prachu.
Pomůcka: Pro velmi jemný prach můžeme měřit dobu pádu prachu na zem a za pomoci Stokesova vzorce pro odpor prostředí můžeme poloměr dopočítat.
a $Ψ_{2}(x,y,z,t)$, které odpovídají stacionárním stavům s různými energiemi $E_{1}$ a $E_{2}$. Pokud budete chtít, můžete si dosazením do časové Schrödingerovy rovnice ověřit, že i jejich superpozice
$$Ψ(x,y,z,t)=a Ψ_{1}(x,y,z,t) + b Ψ_{2}(x,y,z,t)\,,$$ $a,b$ jsou komplexní čísla, $|a|+|b|≠0$, odpovídá časovému vývoji přípustné vlnové funkce. Vaším úkolem je ale něco jiného. Máte zjistit, za jakou dobu $T$ bude částice, která byla v čase $t=0$ popsána funkcí $Ψ(x,y,z,0)$, opět ve stejném stavu. Jinak řečeno, najděte nejmenší možné $T>0$, pro které je $$Ψ(x,y,z,T)=cΨ(x,y,z,0)\,,$$ kde $c$ je libovolné nenulové komplexní číslo.
Literatura: Arthur Beiser: Úvod do moderní fyziky, Academia, Praha 1978.