Termín uploadu: -
Hokejista jede po ledě jen po jedné brusli. Led, který má hustotu $0,9\,\jd{ g\cdot cm^{-3}}$ pod bruslí taje do hloubky $h=0,03\;\mathrm{mm}$. Nůž brusle je široký $d=2\;\mathrm{mm}$. Skupenské teplo tání ledu je $λ=3,3\cdot 10^{5}\, \jd{J.kg^{-1}}$. Spočtěte velikost třecí síly mezi bruslí a ledem. Tepelnou vodivost ledu zanedbejte.
Špionážní družice létá okolo nepřátelské planety po kruhové dráze v rovníkové rovině. Doba jednoho oběhu je $T$, planeta má hustotu $ρ$. Na jak velké části povrchu planety může družice provádět špionáž?
Tyč o hustotě $ρ_{1}$ a délce $l$ je za jeden konec pohyblivě připevněna k vodorovné hrazdě (tak, že se okolo ní může tyč volně otáčet), druhý konec volně visí. Pokud budeme pomalu spouštět hrazdu dolů, bude se tyč přibližovat k hladině vody ($ρ>ρ_{1}$) a začne se do ní ponořovat. Zjistěte závislost úhlu, který svírá tyč se svislým směrem, na výšce hrazdy nad hladinou.
Spočtěte, o kolik procent se bude lišit teplota na Zemi v periheliu, kdy je Země od Slunce vzdálena $r$, od teploty v aféliu, kdy je vzdálenost Země–Slunce $r(1+ε)$ nepatrně větší. Předpokládejte, že Země je dokonale černé těleso a v každém okamžiku je v rovnováze s okolím. Celkový vyzářený výkon je úměrný $σT^{4}$.
Vzduch v horkovzdušném balónu je zahříván konstantním příkonem, aby se vyrovnaly tepelné ztráty a balón letěl stále ve stejné výšce. Průměrná teplota vzduchu v balónu je $t=57\;\mathrm{°C}$, teplota okolního vzduchu je $t_{0}=17\;\mathrm{°C}$. Tlak vzduchu v balónu je roven okolnímu tlaku. Pokud zvýšíme příkon hořáku tak, aby teplota v balónu vzrostla o $Δt=0,1\;\mathrm{°C}$, o kolik se změní výška letu balónu?
Sežeňte si tenké gumičky a