Termín uploadu: 28. 4. 2020 23:59:59
Jakou energii v elektronvoltech by získal proton při pádu z nekonečna na povrch Země? Neuvažujte vliv jiných vesmírných těles.
Kačka viděla svislý urychlovač.
Ve vaně je napuštěna voda do výšky $15,0 \mathrm{cm}$. Špunt má tvar komolého kužele, který dokonale padne do otvoru ve dně. Poloměry jeho podstav jsou $16,0 \mathrm{mm}$ a $15,0 \mathrm{mm}$ a jeho hmotnost je $11,0 \mathrm{g}$. Jakou silou působí dno vany na špunt? Předpokládejte, že v trubce pod ním je vzduch s atmosférickým tlakem.
Jindra cítil tlak na vymýšlení jednoduchých úloh.
Jak těžké závaží můžeme zavěsit na konec ramínka věšáku bez toho, aby se převrhnul? Věšák je tvořen háčkem z velmi lehkého drátu, který je připevněn ke středu rovné dřevěné tyčky o délce $l=30 \mathrm{cm}$ a o hmotnosti $m=200 \mathrm{g}$. Háček má tvar kružnicového oblouku s poloměrem $r=2,5 \mathrm{cm}$ a s úhlovým rozpětím $\theta =240 \mathrm{\dg }$. Vzdálenost středu oblouku a středu tyčky je $h=5 \mathrm{cm}$. Veškeré tření zanedbejte.
Dodo shání nedostatkové zboží.
Z radosti nad koncem zkouškového začaly Dance přibývat vlasy konstantní rychlostí. Po nějaké době si všimla, že jí jeden vypadl, a zděsila se. Čím více vlasů jí vypadlo, tím větší cítí stres a o to rychleji jí vypadávají další. Přesněji, rychlost vypadávání vlasů je přímo úměrná počtu již vypadnutých vlasů. Rychlost přibývání vlasů zůstává stejná. Opět nás zajímá, kdy Dance vypadne poslední vlas?
Tohle chtěl Jáchym spočítat už dlouho.
Magické pole Zeměplochy je natolik silné, že v něm světlo úplně ztratí smysl pro rychlost. To ovšem platí pouze v blízkosti povrchu, kde má index lomu magického pole hodnotu $n_0 = 2,00 \cdot 10^{6}$. S rostoucí výškou $h$ index lomu klesá podle vztahu $n(h) = n_0\eu ^{-kh}$, kde $k = 1,00 \cdot 10^{-7} \mathrm{m^{-1}}$. Určete, pod jakým úhlem vůči svislému směru musíme z jednoho konce Zeměplochy vyslat světelný signál, aby na druhý konec dorazil v co nejkratším čase. Průměr disku Zeměplochy je $d = 15\;000 \mathrm{km}$ a rychlost světla ve vakuu je $c = 3,00 \cdot 10^{8} \mathrm{m\cdot s^{-1}}$.
Mirek čekal, až k němu dorazí světlo ze semaforu.
Pravděpodobně už jste slyšeli, že planety i libovolná jiná tělesa se v centrálním gravitačním poli pohybují po kuželosečkách (v případě Sluneční soustavy jsou to elipsy s malou výstředností). Prozkoumejte, jak by vypadaly trajektorie planet ve vesmíru, kde by gravitační síla závisela na převrácené třetí mocnině vzdálenosti místo na druhé. Nápověda: Může se vám hodit Binetův vzorec.
Matěj rád vyšší dimenze.
Změřte dynamickou viskozitu dvou různých olejů Stokesovou metodou.
Jáchym ukradl Jirkovi nápad ukrást tuto úlohu z praktik.
U všech částí této úlohy po vás chceme, abyste hodnoty následujích veličin alespoň řádově odhadli a svoje odhady náležitě zdůvodnili. Pokud byste někde našli správné hodnoty, můžete je uvést pro srovnání, ale samotné nebudou akceptované jako řešení. Hodnotit se bude především dobře popsaný postup.
Bonus: Co nejpřesněji odhadněte průměrný čas odeslání finální verze této úlohy přes webový upload FYKOSu. Řešení zaslaná poštou neuvažujte. Určující čas je dle serveru.
Bonus II: Připomínáme, že můžete získat body za korektury zadání a řešení úloh tohoto ročníku. Navíc můžete získat jeden bod za to, když ke svému řešení připojíte zpětnou vazbu k letošnímu seriálu. Přišla vám lepší forma ne-zcela navazujících témat? Chybělo vám něco, co bychom mohli dodatečně doplnit na web? Jaké téma byste chtěli v příštím ročníku?
Karel po účastnících chtěl aby něco odhadli.