Termín uploadu: -
Uzavřená nádoba obsahující ideální plyn se pohybuje rychlostí $v$. Nádoba se náhle zastaví a veškerá kinetická energie plynu se změní v teplo. Zanedbejte teplo předané stěnám a spočtěte, o kolik se zvětší druhá mocnina střední kvadratické rychlosti molekul plynu, je-li plyn
Zdůvodněte rozdílné výsledky v jednotlivých případech.
Mějme elektrický dipól (představte si ho jako dvě částice se stejnými hmotnostmi $m$ a náboji $+q$ a $-q$ upevněné na koncích nehmotné tyčky délky $l$). Otáčí se v horizontální (vodorovné) rovině okolo vertikální (svislé) osy procházející středem dipólu. Popište pohyb dipólu poté, co zapneme konstantní vertikální magnetické pole $B$.
Rezonanční obvod se skládá z neideální cívky s indukčností $L=1\,\jd{ H}$ a vnitřním odporem $R=1\,\jd {Ω}$ a neideálního kondenzátoru s kapacitou $C=1\,\jd{µF}$ o neznámém svodovém odporu $R_{x}$. Jaká je velikost $R_{x}$, pokud víme, že se 1/3 původní energie rezonančního obvodu ztrácí v podobě tepla na odporu cívky?
Malá kovová kulička o hmotnosti $m=3,0\,\jd{g}$ je zavěšena na tenkém hedvábném vlákně délky $l=30\;\mathrm{cm}$ tak, aby se dotýkala svislé kovové desky. Kuličku vychýlíme o úhel $α$ a uvolníme. Po odrazu od desky se kulička vychýlí o úhel $β<α$ (obr. 1).
Při druhém pokusu umístíme do vzdálenosti $d=5,0\;\mathrm{cm}$ od první desky druhou stejně velkou. Závěs kuličky prodloužíme, aby byl mnohem delší než vzdálenost desek. Připojíme-li desky ke zdroji vysokého napětí $U=2,00\cdot 10^{4}$ V a závěs vychýlíme, kulička se rozkmitá a naráží střídavě na levou a pravou desku (obr. 2). Perioda nárazů se brzy ustálí na hodnotě $T=0,45\;\mathrm{s}$.
Jak se mění při druhém pokusu rychlost kuličky mezi dvěma nárazy na desky? Jaký náboj nese kulička během letu mezi deskami?
Už od pradávna se lidé zabývali pozorováním oblohy a později pohybem planet okolo Slunce. Jak se to historicky odehrálo, asi všichni znáte. Tycho de Brahe sledoval mnoho let pohyby planet a zhotovil rozsáhlé tabulky. Z nich vyšel Kepler a objevil své zákony. Těch využil Newton, lépe pochopil podstatu těchto zákonů a dospěl ke krásnému vztahu:
$$F_{G} = G\frac{ mM}{r^{2}}\,.$$
Takto popisujeme pouze pohyb planet okolo Slunce. Můžeme říci, co vyvolává tuto sílu? Tímto se zabýval i Newton a nakonec se uspokojil poznáním toho, co se odehrává, bez znalosti mechanismu. Dodnes jej nikdo neobjevil. Bylo navrženo více mechanismů gravitace. Jeden ze zajímavých je tento:
Představte si, že v prostoru je velké množství částic, které se pohybují velkou rychlostí ve všech směrech a jsou málo absorbované při průchodu hmotou. Když jsou pohlcené Zemí, předávají jí hybnost. Když je těch, které jdou jedním směrem, stejně jako těch z opačného směru, jsou hybnosti vyvážené. Když se k Zemi přiblíží Slunce, jsou částice přicházející na Zemi přes Slunce částečně absorbovány a ve směru od Slunce jich přichází méně než z opačné strany. Země proto získá hybnost směřující k Slunci.
Na vás je, abyste ověřili, jestli je taková gravitační síla nepřímo úměrná čtverci vzdáleností (uvažujte dvě koule, kde jedna je mnohem menší než ta druhá – stačí přibližně). Jak asi tušíte, tento mechanismus gravitace není správný. Zkuste přijít na to, kde selhává.
Návod: Najděte chybné důsledky.
Změřte atmosférický tlak v místě vašeho bydliště a to touto metodou: Ponořujte do nádoby s vodou prázdnou skleničku dnem vzhůru a z toho, jak vysoko se dostane voda ve skleničce spočtěte atmosférický tlak. Znáte hustotu vody $ρ$ a tíhové zrychlení $g$. Nezapomeňte uvést místo a čas měření.
$1\,\jd {µs}$? K výpočtům použijte nastíněného geometrického modelu.