Termín uploadu: -
Pták Fykosák jednoho dne vypil 2 dcl vody. Uběhlo milénium a všechna voda na Zemi se stihla mezitím promíchat. Když teď pták znovu vypije 2 dcl vody, kolik molekul z vody, co vypil právě před miléniem, v nich bude?
Karel se bojí cholery.
Jak by musel být minimálně dlouhý ocelový drát ve stočeném stavu, aby se při volném zavěšení za jeho jeden konec přetrhl? Používáme ocelový drát o hustotě $ρ=7900\;\mathrm{kg}\cdot \mathrm{m}^{-3}$, průměru $D=1\;\mathrm{mm}$ a mezi pevnosti $σ_{max}=400\; \jd{MPa}$. Uvažujte, že jsme v homogenním tíhovém poli o intenzitě $g=9.81\;\mathrm{m}\cdot \mathrm{s}^{-2}$.
Bonus: Uvažujte teď nejdelší drát, který se ještě nepřetrhne. O kolik procent se protáhne po zavěšení? Youngův modul pružnosti v tahu použité oceli je $E=200\;\jd{GPa}$.
Karel s drátem v oku
Jestliže do vzdálenosti $p$ od tenké čočky vyrobené ze skla o indexu lomu $n_{s}$ umístíme předmět, podaří se nám zachytit jeho obraz na stínítku ve vzdálenosti $d$ od ní. Čočku a předmět beze změny vzájemné vzdálenosti poté ponoříme do kapaliny o indexu lomu $n$. Za jakých podmínek budeme nyní schopni zachytit obraz předmětu na stínítko a v jaké vzdálenosti $x$ od čočky to bude?
Pikoš se utopil i s brýlemi.
O kolik se zvýší rychlost čepování čaje $v_{0}$, pokud je do várnice právě doléván? Průměr várnice je $D$, průměr proudu dolévaného čaje je $d$ právě při dopadu na hladinu. Čaj naléváme z výšky $h$ nad hladinou, která je ve výšce $H$ nad středem otvoru. Průměr otvoru, jímž čaj vytéká, je mnohem menší než $D$. Zanedbejte veškeré tření.
Lukášovi přetekla sklenička v menze.
Mějme hráče baseballu, který drží v rukou baseballovou pálku délky $L$ a hmotnosti $m$ a chystá se na odpal míčku. Jako vhodné přiblížení se držme toho, že hráč může otáčet pálkou jen okolo fixované osy, která je kolmá na osu pálky a prochází na jejím konci rukama odpalujícího hráče. Pálkou otáčí úhlovou rychlostí $ω$. V jaké vzdálenosti $l$ od konce pálky má hráč odpálit míček, aby nárazová síla na hráčovy ruce byla co nejmenší? Pálka je tenká homogenní tyč.
Dostal míčkem Radomír.
Kolik lidí dokáže za sekundu usmrtit nestíněný jaderný reaktor?
Když pustíte nafukovací balónek z výšky, po chvíli bude padat s přibližně konstantní rychlostí. Změřte, jak závisí tato rychlost na velikosti balónku a na hmotnosti závaží, které pod něj zavěsíte.
Pikoš
$$^{2}_{1}D + ^{2}_{1}D → ^{3}_{2}He + n + 3,27 MeV (50 \%),$$
$$^{2}_{1}D + ^{2}_{1}D → ^{3}_{1}T + p + 4,03 MeV (50 \%),$$
kde opět $\frac{3}{4}$ energie v první reakci odnáší neutron, spočtěte celkový ohřev plazmatu, který se vyvine během jedné DD reakce (uvažujte, že následně proběhne i DT fúze s produktem druhé reakce) a odhadněte nároky na dobu udržení při hustotě $10^{20} \;\jd{m^{ - 3}}$ a teplotě 10 keV.
Robin.